Modulkatalog

der Ordnung der Johann Wolfgang Goethe-Universität für den Bachelor-Master-Studiengang Mathematik

in der Fassung vom 13.02.2017

${\bf Anhang~2:~Modulbeschreibungen/Bachelor/Pflichtbereich}$

Folgende Module gehören zum Pflichtbereich des Bachelorstudiums:

Modulname	Kürzel	Seite
Analysis 1	BaM-AN	37
Analysis 2	BaM-AN	38
Lineare Algebra 1	BaM-LA	39
Lineare Algebra 2	BaM-LA	40
Modellierung und Rechnerunterstützung in der Mathematik	$\operatorname{BaM-CM}$	41
Elementare Stochastik	$\operatorname{BaM-ES}$	42
Numerische Mathematik	BaM-NM	43
Diskrete Mathematik	BaM-DM	44
Höhere Analysis	BaM-HA	45

Diese Module werden auf den folgenden Seiten beschrieben.

Modulbezeichnung: Analysis 1, BaM-AN1	Pflicht	CP: 9
Inhalte der Lehrveranstaltungen:		

innaite dei Deniveransianangen.

 $Zahlbereiche, Folgen \ und \ Reihen, Stetigkeit, Differenzierbarkeit, Taylorsche \ Formel, spezielle \ Funktionen.$

Qualifikationsziele und Kompetenzen:

Die Studierenden sind mit grundlegenden mathematischen Denkweisen vertraut (Formalisieren von Aussagen, Beschreiben funktionaler Zusammenhänge, lokales Linearisieren nichtlinearer Abbildungen). Sie beherrschen den Übergang zu Grenzprozessen und sind kompetent im Umgang mit Differenzierbarkeit und Integrierbarkeit im Eindimensionalen. Sie sind in der Lage, einfache mathematische Probleme selbständig zu lösen.

	T							
Angebotszyklus:	jährlich							
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	_							
Modul:								
(ggf.) Lehr- und Prüfungssprache:	Deutsch							
Studiennachweise (Teilnahme- / Leis-	LN: Übungsaufgaben, beno	tete Kla	usur (l	oSL)				
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	_							
prüfung oder kumulative Modulprü-								
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	LN wie beschrieben							
CP:								
Verwendbarkeit des Moduls in anderen	L3M-AN1							
Studiengängen:								
Lehrveranstaltungen	Тур	SWS Semester Cl						
			1 2	3	4	5	6	
Analysis 1	Vorlesung + Übung	4 + 2	*					9

Modulbezeichnung: Analysis 2, BaM-AN2	Pflicht	CP: 9

Abstand und inneres Produkt, Stetigkeit und Differenzierbarkeit von Funktionen mehrerer Variabler, Satz über implizite Funktionen, Untermannigfaltigkeiten des \mathbb{R}^n , Grundlagen der Maßtheorie.

Qualifikationsziele und Kompetenzen:

Die Studierenden sind kompetent im Umgang mit Differenzierbarkeit und Integrierbarkeit auch im Mehrdimensionalen und sind damit qualifiziert, den Einsatz der grundlegenden Begriffe Ableitung und Integral in weitergehenden Veranstaltungen (Höhere Analysis, Funktionalanalysis, Numerik, Stochastik, ...) zu vertiefen. Sie kennen und verstehen die Konzepte der lokalen und globalen Approximation und sind in der Lage, einfache mathematische Probleme selbständig zu lösen.

Angebotszyklus:	jährlich							
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	Leistungsnachweise aus BaM-AN1							
Modul:								
(ggf.) Lehr- und Prüfungssprache:	Deutsch							
Studiennachweise (Teilnahme- / Leis-	LN: Übungsaufgaben							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	- Modulabschlussprüfung: 120-minütige Klausur							
prüfung oder kumulative Modulprü-								
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	LN wie beschrieben, bestan	dene M	odulpri	ifung				
CP:								
Verwendbarkeit des Moduls in anderen								
Studiengängen:								
Lehrveranstaltungen	Тур	SWS		Seme	ester	•		CP
			1 2	3	4	5	6	
Analysis 2	Vorlesung + Übung	4+2	*					9

Modulbezeichnung: Lineare Algebra 1, BaM-LA1	Pflicht	CP: 9

Vorlesung Lineare Algebra: Vektorräume und affine Räume, euklidische Räume, Lineare Abbildungen und Matrizen, Determinanten und Eigenwerte, Lineare (Un)Gleichungen.

Qualifikationsziele und Kompetenzen:

Die Studierende sind kompetent im Umgang mit Vektorräumen, linearen Abbildungen und deren Repräsentation als Matrizen. Sie sind qualifiziert, diese Objekte in weiterführenden Veranstaltungen (Geometrie, Grundlagen der Algebra, Algebra etc.) anzuwenden. Die Studierende verstehen einfache Beweise und haben die Kompetenz erworben, kurze mathematische Argumente aufzuschreiben.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am									
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch								
Studiennachweise (Teilnahme- / Leis-	LN: Übungsaufgaben, benot	tete Klaı	usur	(bS	L)				
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	_								
prüfung oder kumulative Modulprü-									
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	LN wie beschrieben								
CP:									
Verwendbarkeit des Moduls in anderen	L3M-AG								
Studiengängen:									
Lehrveranstaltungen	Тур	SWS		S	\mathbf{Seme}	ste	r		CP
			1	2	3	4	5	6	
Lineare Algebra	Vorlesung + Übung	4+2	*						9

 $Vorlesung\ Geometrie$: Isometrien und Bewegungen, euklidische Vektorräume, affine und projektive Geometrie, Kegelschnitte.

Vorlesung Grundlagen der Algebra: Gruppen, Homomorphiesätze, Quotienten, Gruppenoperationen, Ringe, Ideale, faktorielle Ringe, euklidsche Ringe, Ideale, endliche Körper.

Qualifikationsziele und Kompetenzen:

Die Studierende sind kompetent im Umgang mit einfachen algebraischen Strukturen (z.B. Gruppen und Ringe). Sie haben die grundlegenden Kenntnisse in euklidscher und nicht euklidscher Geometrie erworben. Sie sind qualifiziert, das Erarbeitete in weiterführenden Veranstaltungen (Algebra, kommutative Algebra, Grundlagen der Algebraischen Zahlentheorie, etc.) anzuwenden.

	T									
Angebotszyklus (z.B. jährlich oder je-	jährlich									
des Semester):										
Dauer des Moduls:	1 Semester									
Voraussetzung für die Teilnahme am	Leistungsnachweise aus BaM-LA1									
Modul:										
(ggf.) Lehr- und Prüfungssprache:	Deutsch									
Studiennachweise (Teilnahme- / Leis-	LN: -									
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 120-minütige Klausur oder kumulativ									
prüfung oder kumulative Modulprü-	je eine 60-minütige Klasur für die beiden LV des Moduls									
fung) sowie Prüfungsform:										
Voraussetzungen für die Vergabe der	LN wie beschrieben, bestar	ndene Mo	odulj	prüf	ung					
CP:										
Verwendbarkeit des Moduls in anderen	L3M-AG									
Studiengängen:										
Lehrveranstaltungen	Тур	SWS	WS Semester CP							
			1	2	3	4	5	6		
Geometrie	Vorlesung + Übung	2 + 1		*					5	
UND										
Grundlagen der Algebra	Vorlesung + Übung	2 + 1		*					5	

Vorlesung Einführung in die computerorienterte Mathematik: allgemeine mathematische Grundlagen zu Studienbeginn, Grundlagen symbolischen und numerischen Rechnens, einfache mathematische Algorithmen, Softwaresysteme Maple bzw. Sage und Anwendungen, Textverarbeitung mit LaTeX, einfache Modellierung und ihre computergerechte Umsetzung.

Proseminar: Themenangebote aus verschiedenen Teilbereichen der Mathematik, z.B. aus Analysis, linearer Algebra, Geometrie, Stochastik, diskreten Strukturen, Modellierung, Visualisierung

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen die Grundlagen computerorientierter Methoden und Herangehensweisen. Sie haben ein Verständnis für algorithmisches Handeln und verfügen über erste Erfahrungen in der Modellierung von Problemen. Sie sind in der Lage, Hilfsmittel zur Visualisierung einfacher mathematischer Zusammenhänge anzuwenden und können kleinere Projekte ("Miniprojekte") behandeln und darstellen.

Angebotszyklus (z.B. jährlich oder je-	jährlich									
des Semester):										
Dauer des Moduls:	2 Semester									
Voraussetzung für die Teilnahme am	für das Proseminar: bestandene Klausuren zu Analysis 1 und									
Modul:	Lineare Algebra, LN aus Einfül								- 1	
	Mathematik									
(ggf.) Lehr- und Prüfungssprache:	Deutsch									
Studiennachweise (Teilnahme- / Leis-	LN zur Einführung in die comput	erorient	erte	Ma	then	natil	k: Ü	bung	gs-	
tungsnachweise):	aufgaben, Miniprojekte, ggf. Qui	z-Leistu	ngsı	nach	weis	se, ı	ınbe	note	ete	
,	Klausur									
	LN zum Proseminar: Vortrag und schriftliche Ausarbeitung (unbe-									
	notet)									
Modulprüfung (z.B. Modulabschluss-	_									
prüfung oder kumulative Modulprü-										
fung) sowie Prüfungsform:										
Voraussetzungen für die Vergabe der	LN wie beschrieben									
CP:										
Verwendbarkeit des Moduls in anderen	L3M-ESC									
Studiengängen:										
Lehrveranstaltungen	Typ	SWS			Seme	este	r		CP	
	-		1	2	3	4	5	6	-	
Einführung in die computerorientierte	Vorlesung + Übung	4+2	*			_	_		9	
Mathematik	voircoung 4+2 9									
UND										
· · · ·	Dragonsinon	2		*					9	
Proseminar	Proseminar	2		"					3	

Modulbezeichnung: Elementare Stochastik, BaM-ES	Pflicht	CP: 9

Verteilungen, Ereignisse, Wahrscheinlichkeiten, Zufallsvariablen, Erwartungswert, Varianz, Covarianz, Unabhängigkeit, bedingte Wahrscheinlichkeiten und Erwartungen, mehrstufige Experimente, Markov-Ketten; Elemente der Statistik und der Informationstheorie.

Qualifikationsziele und Kompetenzen:

Die Studierenden gehen auf elementarem Niveau mit den Begriffen der Stochastik kompetent um. Sie kennen typische Anwendungen der Stochastik und haben erste Erfahrungen mit der stochastischen Modellierung.

jährlich								
1 Semester								
Empfohlen sind Kenntnisse aus Analysis 1 und Linearer Algebra							lgebra	
Deutsch oder Englisch								
LN: Übungsaufgaben								
- Modulabschlussprüfung: 90-minütige Klausur								
LN wie beschrieben, bestan	dene M	odu	lprüfun	g				
als Teilmodul von L3M-ES0	C;							
Bachelor Informatik B-AW-ES (Angewandte Mathematik)								
Typ SWS Semester C							CP	
		1	2 3	4	5	6		
Vorlesung + Übung	4 + 2		*				9	
	Empfohlen sind Kenntnisse Deutsch oder Englisch LN: Übungsaufgaben Modulabschlussprüfung: 90 LN wie beschrieben, bestan als Teilmodul von L3M-ESG Bachelor Informatik B-AW- Typ	1 Semester Empfohlen sind Kenntnisse aus An Deutsch oder Englisch LN: Übungsaufgaben Modulabschlussprüfung: 90-minütig LN wie beschrieben, bestandene M als Teilmodul von L3M-ESC; Bachelor Informatik B-AW-ES (An Typ SWS	1 Semester Empfohlen sind Kenntnisse aus Analys Deutsch oder Englisch LN: Übungsaufgaben Modulabschlussprüfung: 90-minütige K LN wie beschrieben, bestandene Modu als Teilmodul von L3M-ESC; Bachelor Informatik B-AW-ES (Angew Typ SWS 1	1 Semester Empfohlen sind Kenntnisse aus Analysis 1 und Deutsch oder Englisch LN: Übungsaufgaben Modulabschlussprüfung: 90-minütige Klausur LN wie beschrieben, bestandene Modulprüfun als Teilmodul von L3M-ESC; Bachelor Informatik B-AW-ES (Angewandte Matter) Typ SWS Sem 1 2 3	1 Semester Empfohlen sind Kenntnisse aus Analysis 1 und Lin Deutsch oder Englisch LN: Übungsaufgaben Modulabschlussprüfung: 90-minütige Klausur LN wie beschrieben, bestandene Modulprüfung als Teilmodul von L3M-ESC; Bachelor Informatik B-AW-ES (Angewandte Math Typ SWS Semeste 1 2 3 4	1 Semester Empfohlen sind Kenntnisse aus Analysis 1 und Lineare Deutsch oder Englisch LN: Übungsaufgaben Modulabschlussprüfung: 90-minütige Klausur LN wie beschrieben, bestandene Modulprüfung als Teilmodul von L3M-ESC; Bachelor Informatik B-AW-ES (Angewandte Mathematyp) SWS Semester 1 2 3 4 5	1 Semester Empfohlen sind Kenntnisse aus Analysis 1 und Linearer A Deutsch oder Englisch LN: Übungsaufgaben Modulabschlussprüfung: 90-minütige Klausur LN wie beschrieben, bestandene Modulprüfung als Teilmodul von L3M-ESC; Bachelor Informatik B-AW-ES (Angewandte Mathematik) Typ SWS Semester 1 2 3 4 5 6	

Modulbezeichnung: Numerische Mathematik, BaM-NM	Pflicht	CP: 11

Inhalte:

Vorlesung Numerische Mathematik: Einführung in die grundlegenden Konzepte der Numerischen Analysis und der Numerischen Linearen Algebra (z.B. Approximation, Interpolation, Numerische Integration und Differentiation, Lösung linearer und nichtlinearer Gleichungen, Bestimmung von Eigenwerten, Ausgleichsrechnung)

Kurs Numerisches Programmieren: Implementierung numerischer Algorithmen in einer praxisrelevanten numerischen Programmiersprache (z.B. Scilab oder Matlab)

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen grundlegende numerische Konzepte kennen. Sie lernen, grundlegende numerische Algorithmen zu entwickeln, mathematisch zu analysieren, computergestützt zu implementieren und auf konkrete Probleme anzuwenden.

Angebotszyklus:	jährlich								
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	Empfohlen sind BaM-AN1, BaM-LA1, BaM-AN2, BaM-LA2								12
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	LN: Übungsaufgaben								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-minütige Klausur oder 30-minütige								
prüfung oder kumulative Modulprü-	mündliche Prüfung								
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Verwendbarkeit des Moduls in anderen	Bachelor Informatik B-AW	7-NM (A	Anw	endı	ings	sfacl	ı M	athe	ma-
Studiengängen:	tik)								
	Lehramt L3, Studienfach M		tik:	L3N	1-H	Μ.			
Lehrveranstaltungen	Typ	SWS	L			este			CP
			1	2	3	4	5	6	
Numerische Mathematik	Vorlesung + Übung	4+2			*				9
UND									
Kurs Numerisches Programmieren	Kurs (Vorsemesterkurs	_			*				2
	oder vorlesungsbeglei-								
	tend)								

Modulbezeichnung: Diskrete Mathematik,	BaM-DM	Pflicht	CP: 9

Grundlegende Modelle und Konzepte der diskreten Mathematik: Kombinatorik, Graphentheorie, modulare Arithmetik, diskrete Aspekte der elementaren Zahlentheorie und ihrer Anwendungen, RSA-Codierschema, Codierungstheorie, diskrete geometrische Strukturen, algorithmische Aspekte

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen die Grundmodelle der diskreten Mathematik. Sie haben ein Verständnis für endliche Strukturen und algorithmische Herangehensweisen und kennen einige Grundalgorithmen der diskreten Mathematik.

Angebotszyklus (z.B. jährlich oder je-	jährlich					
des Semester):						
Dauer des Moduls:	1 Semester					
Voraussetzung für die Teilnahme am	bestandene Klausuren zu A	nalysis 1 und Linearer Algebra, Leis-				
Modul:	tungsnachweis zur Einführu	ng in die computerorientierte Mathe-				
	matik. Empfohlen: Mathem	atik-Veranstaltungen des ersten Stu-				
	dienjahres					
(ggf.) Lehr- und Prüfungssprache:	Deutsch					
Studiennachweise (Teilnahme- / Leis-	LN: Übungsaufgaben, ggf. G	Quiz				
tungsnachweise):						
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-	minütige Klausur				
prüfung oder kumulative Modulprü-						
fung) sowie Prüfungsform:						
Voraussetzungen für die Vergabe der	LN wie beschrieben, bestand	dene Modulprüfung				
CP:						
Verwendbarkeit des Moduls in anderen	Bachelor Informatik B-AW-	DM (Anwendungsfach Mathematik),				
Studiengängen:	Lehramt Mathematik L3M-1	ME (Lehrveranstaltung nach Wahl)				
Lehrveranstaltungen	Тур	SWS Semester CP				
		1 2 3 4 5 6				
Diskrete Mathematik	Vorlesung + Übung	4+2 * 9				

Modulbezeichnung: Höhere Analysis, BaM-HA Pflicht	CP: 10
---	--------

 $Vorlesung\ Integrationstheorie:$ Lebesgueintegral, L^p -Räume, Gaußscher Integralsatz, Integration auf Mannigfaltigkeiten

Vorlesung Funktionentheorie und gewöhnliche Differentialgleichungen: Funktionen einer komplexen Variablen, Cauchyscher Integralsatz, Residuensatz, Grundlagen der Theorie der gewöhnlichen Differentialgleichungen

Qualifikationsziele und Kompetenzen:

Die Studierenden haben Kenntnisse in Integrationstheorie, speziell in mehreren Variablen, erworben und können diese auf analytische Probleme anwenden. Sie haben ein vertieftes Verständnis des Funktionenbegriffs, insbesondere in einer komplexen Variablen, erlangt und können die Lösungsmenge einfacher Klassen gewöhnlicher Differentialgleichungen charakterisieren.

Angebotszyklus:	jährlich									
Dauer des Moduls:	1 Semester									
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-LA1	BaM-AN1, BaM-LA1								
Modul:										
(ggf.) Lehr- und Prüfungssprache:	Deutsch									
Studiennachweise (Teilnahme- / Leis-	LN: -									
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 120-minütige Klausur oder kumulativ									
prüfung oder kumulative Modulprü-	je eine 60-minütige Klasur für die beiden LV des Moduls									
fung) sowie Prüfungsform:										
Voraussetzungen für die Vergabe der	LN wie beschrieben, bestandene Modulprüfung									
CP:										
Verwendbarkeit des Moduls in anderen	Bachelor Informatik B-AW	-HA (Aı	nwen	ıdur	ıgsfa	ach I	Mat	hem	atik)	
Studiengängen:										
Lehrveranstaltungen	Тур	SWS		Ç	Seme	este	r		CP	
			1	2	3	4	5	6		
Integrationstheorie	Vorlesung	2+1			*				5	
UND										
Funktionentheorie und gewöhnliche	Vorlesung	2+1			*				5	
Differentialgleichungen										
Funktionentheorie und gewöhnliche	Vorlesung	2+1			*				5	

Anhang 3: Modulbeschreibungen/Bachelor/Vertiefungsbereich

Auf den folgenden Seiten werden die Wahlpflichtmodule im Vertiefungsbereich des Bachelorstudiums beschrieben. Jedes Wahlpflichtmodul besteht aus mindestens einer Lehrveranstaltung des Typs "Vorlesung + Übung" und kann auch ein Seminar enthalten. Damit ergeben sich die *Modulformate g, k, gk, gs, ks, gks, ...*, mit den Abkürzungen

 $g\ldots$ große Vorlesung (4 SWS) + Übung (2 SWS) $k\ldots$ kleine Vorlesung (2 SWS) + Übung (1 SWS) $s\ldots$ Seminar (2 SWS).

Jedes Wahlpflichtmodul ist Teil eines der folgenden Gebiete:

Gebiet	Kürzel	Seite
Algebra und Zahlentheorie	BaM-Alg, BaM-ZT	47, 50
Topologie	BaM-TOP	53
Differentialgeometrie	$\operatorname{BaM-DG}$	55
Funktionalanalysis	BaM-FA	57
Partielle Differentialgleichungen	BaM-PDGL	59
Differentialgleichungen und Dynamische Systeme	BaM-DGDS	61
Numerik	BaM-NUM	63
Numerische Finanzmathematik	BaM-NFM	65
Diskrete und Algorithmische Mathematik	BaM-DAM, BaM-KOM	67, 69
Stochastik	BaM-STO	70
Statistik	BaM-STA	72
Zeitdiskrete Finanzmathematik	BaM-DF	74
Stochastische Analysis mit Finanzmathematik	BaM-SAN	75

Zusätzlich gehören folgende Module zum Vertiefungsbereich des Bachelorstudiums:

- Allgemeine berufsvorbereitende Veranstaltungen (Seite 76)
- Abschlussmodul (Seite 76)

In den einzelnen Gebieten werden "Elementarmodule" typischerweise in den Formaten gs oder k beschrieben, vereinzelt auch in den Formaten ks oder gks. In Fußnoten wird beschrieben, wie das jeweilige Spezialisierungsgebiet ausgestaltet werden kann. Grundsätzlich werden innerhalb der Formate gs und ks beschriebenen Lehrveranstaltungen des Typs "Vorlesung + Übung" auch als Module des Formats g bzw. k angeboten, um die Flexibilität im Wahlpflichtbereich zu erhöhen.

In der zum Ende des 3. Studiensemesters stattfindenden Orientierungsveranstaltung wird das für die darauffolgenden drei Semester geplante Lehrveranstaltungs- und Modulangebot des Bachelor-Vertiefungsbereichs vorgestellt. Dieser Katalog wird im Netz auf den Informationsseiten zu Studium und Lehre veröffentlicht. Dasselbe gilt für nachträgliche Modifikationen der Planung wie z.B. nachträglich in das Angebot aufgenommenen Lehrveranstaltungen.

Die Studierenden können sich im Rahmen der Vorgaben zwischen den angebotenen Modulformaten entscheiden. Bei Modulen, die ein Seminar enthalten (Format $\ldots s$), ist im Seminar eine Prüfungsleistung als Teil einer kumulativen Modulprüfung zu erbringen.

Den Studierenden wird dringend empfohlen, an der Orientierungsveranstaltung teilzunehmen und ihre Planungen frühzeitig mit den Dozentinnen und Dozenten der betreffenden Lehrveranstaltungen abzustimmen. Damit wird ein guter Kompromiss zwischen einer freien Gestaltung des Studiums und der Planbarkeit – auch in Hinblick auf die Reduktion der Prüfungslast – erreicht.

Die Verwendbarkeit der jeweiligen Module in anderen Studiengängen ergibt sich aus den Ordnungen der entsprechenden Fachbereiche, jeweils in der aktuell gültigen Fassung.

Modulbezeichnung: Algebra, BaM-Alg-g Gebiet: Algebra und Zahlentheorie Wahlpflicht	CP: 9
Inhalte der Lehrveranstaltungen:	

Algebra: Noethersche Ringe, faktorielle Ringe, Hauptidealringe, Moduln, Moduln über Hauptidealringe, ganzer Abschluss, Körpererweiterungen, Galoistheorie.

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen grundlegende Konzepte der Algebra und können diese sicher anwenden. Ihre Kenntnisse in Algebra erlauben den Besuch von weiterführenden Veranstaltungen im Bereich der Algebra und Zahlentheorie.

Angebotszyklus (z.B. jährlich oder je-	jährlich							
des Semester):								
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	BaM-LA1, BaM-LA2							
Modul:								
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 9	0-minütige I	Klausu	r od	er	20-3	0-	
prüfung oder kumulative Modulprü-	minütige mündliche Prüfun	g.						
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	bestandene Modulprüfung							
CD								
CP:								
CP: Lehrveranstaltungen	Тур	SWS		Sem	este	r		CP
	Тур	SWS	1 2		ester	r 5	6	CP

Modulbez.: Algebra, BaM-Alg-ks Gebiet: Algebra und Zahlentheorie	Wahlpflicht	CP: 9
Inhalte der Lehrveranstaltungen:		

Kommutative Algebra: Algebra: Hilbertscher Basis-Satz, Noether-Normalisierung, Hilbertscher Nullstellensatz, Varietäten und ihre Morphismen.

Funktionenkörper: Transzendente Körpererweiterungen, Funktionenkörper, Bewertungen, Divisoren, Differentiale, Riemann-Roch, Erweiterungen von Funktionenkörpern, Riemann-Hurwitz Formel, Komplettierungen, Zeta-Funktion, Hasse-Weil Schranke, geometrische Goppa Codes.

Wurzelsysteme: Spiegelungen und Wurzelsysteme, reduziert und irreduzibel, Kammern und Basen, Dynkindiagramme, Klassifikation.

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen grundlegende Konzepte in einem Spezialisierungsgebiet im Bereich der Algebra und Zahlentheorie und können diese sicher anwenden. Ihre Kenntnisse erlauben eine weiterführende Vertiefung in diesem Gebiet.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):	3								
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-LA1, BaM-LA2, Emp	fohlen si	nd F	Kenr	ntnis	sse a	us d	er L	ehr-
Modul:	veranstaltung Algebra, sieh	e Seite 4	17						
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 20-30-minütige mündliche Prüfung								
prüfung oder kumulative Modulprü-	zur gewählten Lehrveranstaltung; ca. 60-minütiges Referat und								
fung) sowie Prüfungsform:	ggf. schriftliche Ausarbeitung zum Seminar								
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		,	Seme	este	r		CP
			1	2	3	4	5	6	
Kommutative Algebra	Vorlesung + Übung	2+1				*		*	5
oder Funktionenkörper	$Vorlesung + \ddot{U}bung$	2+1				*		*	5
oder Wurzelsysteme	Vorlesung + Übung	2+1				*		*	5
UND									
Seminar	Seminar	2				*		*	4

Eine Spezialisierung in Algebra mit 18 CP erreicht man durch Hinzunahme der auf Seite 47 beschriebenen Lehrveranstaltung Algebra, siehe dazu Seite 46.

Modulbezeichnung: Algebra, BaM-Alg-gs Gebiet: Algebra und Zahlentheorie Wah	hlpflicht	CP: 13
Inhalte der Lehrveranstaltungen:		

 $Klassische\ algebraische\ Geometrie$: Varietäten über algebraisch abgeschlossenen Körpern, ihre Morphismen und Eigenschaften.

Qualifikationsziele und Kompetenzen:

Die Studierende sind kompetent im Umgang mit zentralen Konzepten der Zahlentheorie. Sie sind qualifiziert, das Erarbeitete in einem Seminar und weiterführenden Vorlesungen anzuwenden.

Angebotszyklus:	Zweijährlich									
Dauer des Moduls:	2 Semester									
Voraussetzung für die Teilnahme am	BaM-LA1, BaM-LA2 und L	ehrveranstaltu	ing A	Algei	bra,	sieh	e Se	i-		
Modul:	te 47. Empfohlen sind Ke	nntnisse aus o	der 1	Lehv	era	nsta	ltun	g		
	Kommutativer Algebra (sieł	ne Seite 48).								
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch									
Studiennachweise (Teilnahme- / Leis-	_									
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 20-30-minütige mündliche Prüfung									
prüfung oder kumulative Modulprü-	zur gewählten Lehrveranstaltung; ca. 60-minütiges Referat und									
fung) sowie Prüfungsform:	ggf. schriftliche Ausarbeitung	ng zum Semin	ar							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung									
CP:										
Lehrveranstaltungen	Тур	SWS		,	Sem	este	r		CP	
			1	2	3	4	5	6		
Klassische algebraische Geometrie	Vorlesung+Übung	4+2					*	*	9	
UND										
Seminar	Seminar	2					*	*	4	

Eine Spezialisierung in Algebra mit 22 CP erreicht man durch Hinzunahme der auf Seite 47 beschriebenen Lehrveranstaltung Algebra, siehe dazu Seite 46.

Modulbez.: Zahlentheorie	, BaM-ZT-g Gebiet: Algebra und Zahlentheorie	Wahlpflicht	CP: 9
T 1 1 T 1			

Elementare Zahlentheorie: Teilbarkeit, kgV, ggT, Primzahlen, Fundamentalsatz der Arithmetik, zahlentheoretische Funktionen, Kongruenzrechnung, chinesischer Restsatz, Primitivwurzeln, quadratisches Reziprozitätsgesetz, Primzahltests, quadratische Zahlkörper, Kettenbrüche, Pell-Gleichung.

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen grundlegende Konzepte der Algebra und können diese sicher anwenden. Ihre Kenntnisse in Zahlentheorie erlauben den Besuch von weiterführenden Veranstaltungen im Bereich der Algebra und Zahlentheorie.

Angebotszyklus (z.B. jährlich oder je-	jährlich									
des Semester):										
Dauer des Moduls:	1 Semester									
Voraussetzung für die Teilnahme am	BaM-LA1, BaM-LA2									
Modul:										
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch									
Studiennachweise (Teilnahme- / Leis-	—	_								
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 9	0-minütige	Klau	sur (oder	20)-30	-		
prüfung oder kumulative Modulprü-	minütige mündliche Prüfun	g.								
fung) sowie Prüfungsform:										
Voraussetzungen für die Vergabe der	bestandene Modulprüfung									
CP:										
Lehrveranstaltungen	Тур	SWS	Semester CF							
			1 2	3	4	5	6			
Elementare Zahlentheorie	Vorlesung + Übung	4 + 2		*		*		9		

Modulbez.: Zahlentheorie, BaM-ZT-ks	Gebiet: Algebra und Zahlentheorie	Wahlpflicht	CP: 9
T 1 1, 1 T 1 , 1,			

Grundlagen der algebraischen Zahlentheorie: Quadratische Zahlkörper, Idealklassengruppe, Einheitengruppe, p-adische Zahlen, Anwendung auf diophantische Gleichungen, Kryptographie.

Funktionenkörper: Transzendente Körpererweiterungen, Funktionenkörper, Bewertungen, Divisoren, Differentiale, Riemann-Roch, Erweiterungen von Funktionenkörpern, Riemann-Hurwitz Formel, Komplettierungen, Zeta-Funktion, Hasse-Weil Schranke, geometrische Goppa Codes.

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen grundlegende Konzepte in einem Spezialisierungsgebiet im Bereich der Algebra und Zahlentheorie und können diese sicher anwenden. Ihre Kenntnisse erlauben eine weiterführende Vertiefung in diesem Gebiet.

Angebotszyklus (z.B. jährlich oder je-	jährlich										
des Semester):											
Dauer des Moduls:	2 Semester										
Voraussetzung für die Teilnahme am	BaM-LA1, BAM-LA2, Empfohlen sind Kenntnisse aus der										
Modul:	Lehrveranstaltung <i>Element</i>	are Zahlent	heor	ie, s	iehe	Sei	te 50	0			
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch										
Studiennachweise (Teilnahme- / Leis-	_										
tungsnachweise):											
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 20-30-minütige mündliche Prüfung										
prüfung oder kumulative Modulprü-	zur gewählten Lehrveranstaltung; ca. 60-minütiges Referat und										
fung) sowie Prüfungsform:	ggf. schriftliche Ausarbeitung zum Seminar										
Voraussetzungen für die Vergabe der	bestandene Modulprüfung										
CP:											
Lehrveranstaltungen	Typ	SWS		,	Sem	este	r		CP		
	<u>.</u>		1	2	3	4	5	6			
Grundlagen der algebraischen Zahlen-	Vorlesung + Übung	2+1				*		*	5		
theorie											
oder Funktionenkörper	Vorlesung + Übung	2+1				*		*	5		
UND											
Seminar	Seminar	2				*		*	4		

Eine Spezialisierung in Zahlentheorie mit 18 CP erreicht man durch Hinzunahme der auf Seite 50 beschriebenen Lehrveranstaltung Elementaren Zahlentheorie, siehe dazu Seite 46.

Modulbez.: Zahlentheorie, BaM-ZT-gs	Gebiet: Algebra und Zahlentheorie	Wahlpflicht	CP: 13

Transzendenztheorie und diophantische Approximation: Mögliche Themen sind Höhen, Siegels Lemma, Sätze von Thue-Siegel-Roth und Anwendungen auf diophantische Gleichungen, Schneider-Lang Theorem, Bakers Satz über Linearformen in Logarithmen sowie Anwendungen, etc.

 $\label{lem:analytische} Analytische\ Zahlentheorie:\ Zetafunktion,\ analytische\ Fortsetzung,\ Primzahlsatz,\ Dedekindsche\ Zetafunktion,\ Klassenzahlformel,\ etc.$

Qualifikationsziele und Kompetenzen:

Die Studierende sind kompetent im Umgang mit zentralen Konzepten der Zahlentheorie. Sie sind qualifiziert, das Erarbeitete in einem Seminar und weiterführenden Vorlesungen anzuwenden.

Angebotszyklus:	Zweijährlich										
Dauer des Moduls:	2 Semester										
Voraussetzung für die Teilnahme am	Kenntnisse in Funktionent	heorie, nac	hzuv	veis	en c	lurc	h B	aM-			
Modul:	HA. Empfohlen sind Kennti	nisse aus der	: Lel	irve	rans	talt	ung	Ele-	-		
	mentare Zahlentheorie, sieh	e Seite 50.									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch										
Studiennachweise (Teilnahme- / Leis-	_										
tungsnachweise):											
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 20-30-minütige mündliche Prüfung										
prüfung oder kumulative Modulprü-	zur gewählten Lehrveranstaltung; ca. 60-minütiges Referat und										
fung) sowie Prüfungsform:	ggf. schriftliche Ausarbeitung	tliche Ausarbeitung zum Seminar									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung										
CP:											
Lehrveranstaltungen	Тур	SWS		,	Sem	este:	r		CP		
			1	2	3	4	5	6			
Transzendenztheorie u. dioph. Approx.	Vorlesung+Übung	4 + 2					*	*	9		
oder Analytische Zahlentheorie	Vorlesung+Übung	4+2	* * 9								
UND											
Seminar	Seminar	2					*	*	4		

Eine Spezialisierung in Zahlentheorie mit 22 CP erreicht man durch Hinzunahme der auf Seite 50 beschriebenen Lehrveranstaltung $Elementare\ Zahlentheorie$, siehe dazu Seite 46.

Topologie: Topologische Räume, Kompaktheit, Trennungsaxiome, Wege, Fundamentalgruppen, Überlagerungen, Simpliziale Komplexe, (Ko)Homologie

Riemannsche Flächen I: Grundkonzepte von Mannigfaltigkeiten und Überlagerungen, Differentialformen, harmonische Funktionen und Formen, Bilinearrelationen, Uniformisierung, Fuchssche Gruppen, Garben

Qualifikationsziele und Kompetenzen:

Die Studierende sind kompetent im Umgang mit grundlegenden Konzepten der Topologie (z.B. Karten, Homotopie). Sie sind qualifiziert, das Erarbeitete in einem Seminar und weiterführenden Vorlesungen anzuwenden.

A 1 - 11 - 7 - 111 1 1 1 1 1	I 1. 1										
Angebotszyklus (z.B. jährlich oder je-	jährlich										
des Semester):											
Dauer des Moduls:	2 Semester										
Voraussetzung für die Teilnahme am	Module BaM-AN1, BaM-LA1, BaM-AN2, BaM-LA2										
Modul:											
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch										
Studiennachweise (Teilnahme- / Leis-	_										
tungsnachweise):											
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 20-30-minütige mündliche Prüfung										
prüfung oder kumulative Modulprü-	zur gewählten Lehrverans	taltung;	60-	\min	ütig	es I	Refe	rat	und		
fung) sowie Prüfungsform:	ggf. schriftliche Ausarbeitu	e Ausarbeitung zum Seminar									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung										
CP:											
Lehrveranstaltungen	Тур	SWS		,	Sem	este	r		CP		
			1	2	3	4	5	6			
Topologie	Vorlesung + Übung	4+2			*	*			9		
oder: Riemannsche Flächen I	Vorlesung + Übung	4+2	* * 9								
UND											
Seminar Topologie	Seminar	2				*	*		4		

Eine Spezialisierung in Topologie mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 54 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

Topologie II: Eine Auswahl der folgenden Themen: Homotopietheorie, Bündel und charakteristische Klassen, Homologische Algebra, Homöomorphismen von Flächen, Knoten.

Riemannsche Flächen II: Eine Auswahl der folgenden Themen: Garben und deren Kohomologie, spezielle Divisoren, Satz von Riemann-Roch, Weierstraßpunkte, Linearsysteme, Automorphismen, elliptische Funktionen, Theta-Funktionen, Flache Flächen.

Abelsche Varietäten: komplexe Tori, Polarisierung, Geradenbündel, Periodenbereiche, Jacobische Varietäten

Qualifikationsziele und Kompetenzen:

Die Studierenden sind kompetent im Umgang mit allen zentralen und einigen tieferliegenden Konzepten der Topologie.

Angebotszyklus (z.B. jährlich oder je-	jährlich									
des Semester):	Janinen									
Dauer des Moduls:	1 Semester									
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				_					
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-LA1, BaM	I-AN2, I	BaM	l-LA	2					
Modul:										
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch									
Studiennachweise (Teilnahme- / Leis-	—									
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-minütige Klausur oder 20-30-									
prüfung oder kumulative Modulprü-	minütige mündliche Prüfung zur gewählten Lehrveranstaltung									
fung) sowie Prüfungsform:										
Voraussetzungen für die Vergabe der	bestandene Modulprüfung									
CP:										
Lehrveranstaltungen	Тур	SWS		S	Seme	ester	•		CP	
			1	2	3	4	5	6		
Topologie II	Vorlesung + Übung	2+1					*	*	5	
oder Riemannsche Flächen II	Vorlesung + Übung	2+1					*	*	5	
oder Abelsche Varietäten	Vorlesung + Übung	2+1					*	*	5	

Modulbezeichnung: Differentialgeometrie, BaM-DG-gs	Wahlpflicht	CP: 13
--	-------------	--------

Analysis auf Mannigfaltigkeiten: Differenzierbare Mannigfaltigkeiten, Satz von Stokes, de Rham-Kohomologie, Laplaceoperator, Hodgetheorie, Wärmeleitungsgleichung, Konstruktion des Wärmeleitungskerns

Elementare Differentialgeometrie: Grundlegende Themen der Differentialgeometrie wie Kurven und Flächen, Mannigfaltigkeiten, Riemannsche Metriken, Gausskrümmung, Satz von Gauss-Bonnet

Riemannsche Geometrie: Riemannsche Mannigfaltigkeiten, Geodätische, Krümmung, Vergleichssätze, Riemannsche Submersionen

Qualifikationsziele und Kompetenzen:

Die Studierenden haben grundlegende Einblicke in eine mathematische Theorie gewonnen, die Methoden der Geometrie und Analysis verwendet und verknüpft.

Angebotszyklus:	jährlich											
Dauer des Moduls:	2 Semester											
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-AN2, BaM-HA											
Modul:												
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch											
Studiennachweise (Teilnahme- / Leis-												
tungsnachweise):												
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 30-minütige mündliche Prüfung zur ge-											
prüfung oder kumulative Modulprü-	wählten Lehrveranstaltung; 60-minütiges Referat und ggf. schrift-											
fung) sowie Prüfungsform:	liche Ausarbeitung zum Seminar											
Voraussetzungen für die Vergabe der	bestandene Modulprüfung											
CP:												
Lehrveranstaltungen	Тур	SWS		S	Sem	estei	:		CP			
			1	2	3	4	5	6				
Analysis auf Mannigfaltigkeiten	Vorlesung	4+2				*	*	*	9			
oder Elementare Differentialgeometrie	Vorlesung und Übung	4+2				*	*	*	9			
oder Riemannsche Geometrie	Vorlesung und Übung $4+2$ $*$ $*$ 9											
UND												
Seminar Differentialgeometrie	Seminar	2				*	*	*	4			

Eine Spezialisierung in *Differentialgeometrie* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 56 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 46.

Geometrische Ungleichungen: Brunn-Minkowski-Ungleichung, Steinersymmetrisierung, Isoperimetrische Ungleichung, Alexandrov-Fenchel-Ungleichung, Blaschke-Santaló-Ungleichung, Mahlervermutung

Symplektische Geometrie: Symplektische Mannigfaltigkeiten, Kählermannigfaltigkeiten, Hamiltonsche Systeme, Kontaktmannigfaltigeiten, Momentenabbildung

Liegruppen: Liegruppen und Lie
algebren, Exponentialabbildung, Klassische Matrixgruppen, Cliffordalgebren und Spingruppen, Kompakte Liegruppen

Geometrische Maßtheorie: Differentialformen, Ströme, Schnitte von normalen Strömen, rektifizierbare Ströme, Deformationssatz, Federer-Fleming-Kompaktheitssatz, Varifaltigkeiten

Minimalflächen: Erste und zweite Variation, Satz von Bernstein, Krümmungsabschätzungen, Plateau Problem

 $\label{lem:constraint} Geometrische \ Variationsprobleme : \ Harmonische \ Abbildungen, \ Flächen \ konstanter \ mittlerer \ Krümmung, \ Willmore-Flächen$

Qualifikationsziele und Kompetenzen:

Die Studierenden haben tieferliegende Kenntnisse in einem Gebiet der Differentialgeometrie erworben.

4 1 1 11	1. 1								
Angebotszyklus:	jährlich								
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-AN2, BaN	І-НА							
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90	0-minüti	ge]	Klau	ısur	ode	er 3	0-m	inütige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	vählten l	Lehr	vera	nst	altu	ng		
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		Ç	Sem	este:	r		CP
			1	2	3	4	5	6	
Geometrische Ungleichungen	Vorlesung	2+1				*	*	*	5
oder Symplektische Geometrie	Vorlesung und Übung	2+1				*	*	*	5
oder Liegruppen	Vorlesung und Übung	2+1				*	*	*	5
oder Geometrische Maßtheorie	Vorlesung und Übung	2 + 1				*	*	*	5
oder Minimalflächen	Vorlesung und Übung	2 + 1				*	*	*	5
oder Geometrische Variationsprobleme	Vorlesung und Übung	2+1				*	*	*	5

Modulbezeichnung: Funktionalanalysis, BaM-FA-gs	Wahlpflicht	CP: 13
---	-------------	--------

Lineare Funktionalanalysis: Normierte Räume, Separabilität und Vollständigkeit, Satz von Baire, stetige lineare Operatoren, Hilberträume, Orthonormalsysteme, Adjungierte Operatoren, Satz von Hahn-Banach, Dualität und schwache Konvergenz;

dazu eine Auswahl folgender Themengebiete: Invertibilität und Spektrum, Spektraltheorie kompakter Operatoren, Radonmaße und der Darstellungssatz von Riesz, Satz von Stone-Weierstraß, Fouriertransformation, Schwartzraum und temperierte Distributionen, Sobolevräume

Qualifikationsziele und Kompetenzen:

Die Studierenden sind in der Lage, Bezüge zwischen abstrakten Begriffen und Resultaten der linearen Funktionalanalysis und Anwendungsbeispielen herzustellen. Des Weiteren haben Sie gelernt, analytische Probleme in einen operatortheoretischen Rahmen einzubetten.

Angebotszyklus (z.B. jährlich oder je-	jährlich/zweijährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	Module BaM-AN, BaM-LA	-							
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 3	30-minü	tige	müı	ndlio	che :	Prüf	ung	zur
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltur	ıg; 60-m	inüt	iges	Ref	erat	und	$l \operatorname{sch}$	rift-
fung) sowie Prüfungsform:	liche Ausarbeitung zum Sei	ninar							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		ŗ	Sem	este	r		CP
			1	2	3	4	5	6	
Lineare Funktionalanalysis	Vorlesung + Übung	4+2				*	*		9
UND									
Seminar zur linearen Funktionalanaly-	Seminar	2					*	*	4
sis									

Eine Spezialisierung in Funktionalanalysis mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 58 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

Ergänzungen zur linearen Funktionalanalysis: Auswahl folgender Themengebiete in Ergänzung zur Vorlesung 'Lineare Funktionalanalysis': Invertibilität und Spektrum, Spektraltheorie kompakter Operatoren, Radonmaße und der Darstellungssatz von Riesz, Satz von Stone-Weierstraß, Fouriertransformation, Schwartzraum und temperierte Distributionen, Sobolevräume

Abbildungsgrad und Fixpunktsätze für nichtlineare Operatoren: Abbildungsgrad von Brouwer, Leray-Schauder-Abbildungsgrad, Fixpunktsätze, Anwendungen auf Randwertprobleme für Differentialgleichungen.

Theorie kritischer Punkte für Variationsprobleme: Differenzierbarkeitseigenschaften nichtlinearer Operatoren, Gradientenfluss und Deformation von Subniveaumengen, Existenzsätze für kritische Punkte und Anwendungen.

Lineare und nichtlineare einparametrige Halbgruppen: Banachraumwertige Integrale, dissipative Operatoren, stark stetige Halbgruppen, lineare und nichtlineare Evolutionsgleichungen.

Qualifikationsziele und Kompetenzen:

Die Studierenden sind in der Lage, Methoden der linearen und nichtlinearen Funktionalanalysis exemplarisch anzuwenden und Besonderheiten linearer und nichtlinearer Probleme sowohl im operatortheoretischen Rahmen als auch im Rahmen von Anwendungen (z.B. auf Differentialgleichungen) zu erkennen.

	I 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
Angebotszyklus (z.B. jährlich oder je-	jährlich/zweijährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	Module BaM-AN, BaM-LA	, Kennt	niss	e au	s de	er Vo	orles	ung	
Modul:	Lineare Funktionalanalysis	sind dri	inge	nd e	mpf	ohle	n		
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90	-minütig	ge K	laus	ur c	der	30-r	ninü	itige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	vählten l	Lehr	vera	nst	altu	ng		
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		Ç	Sem	este	r		CP
			1	2	3	4	5	6	
Ergänzungen zur linearen Funktional-	Vorlesung + Übung	2+1					*	*	5
analysis									
oder Abbildungsgrad und Fixpunktsät-	Vorlesung + Übung	2+1					*	*	5
ze für nichtlineare Operatoren									
oder Theorie kritischer Punkte für Va-	Vorlesung + Übung	2+1					*	*	5
riationsprobleme									
oder Lineare und nichtlineare einpara-	Vorlesung + Übung	2+1					*	*	5
metrige Halbgruppen									

Modulbezeichnung: Par	rtielle Differentialgleichungen, BaM-PDGL-gs	Wahlpflicht	CP: 13

Lineare Partielle Differentialgleichungen: Darstellungsformeln für Lösungen grundlegender partieller Differentialgleichungen, Greenfunktionen, Sobolevräume, elliptische und parabolische Gleichungen zweiter Ordnung, Existenz und Regularität schwacher Lösungen, Maximumsprinzipien

Qualifikationsziele und Kompetenzen:

Die Studierenden können verschiedene Typen partieller Differentialgleichungen unterscheiden und methodisch einordnen. Dabei ist ihnen die Bedeutung verschiedener Lösungsbegriffe in Theorie und Anwendung bekannt. Ferner können sie grundlegende analytische Methoden auf lineare partielle Differentialgleichungen anwenden.

A 1 / 11 / D :::1 1: 1 1 :	1. 1 / 1. 1								
Angebotszyklus (z.B. jährlich oder je-	jährlich/zweijährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	Module BaM-AN, BaM-LA								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 3	0-minüt	ige	mür	ıdlic	he I	Prüf	ung	zur
prüfung oder kumulative Modulprü-	Lehrveranstaltung Lineare p	oartielle	Diff	eren	tial	gleic	hun	gen;	60-
fung) sowie Prüfungsform:	minütiges Referat und schri	ftliche A	Ausa	rbei	itun	g zu	m S	emi	nar
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		5	Sem	este	ſ		CP
			1	2	3	4	5	6	
Lineare partielle Differentialgleichun-	Vorlesung + Übung	4+2				*	*		9
gen									
UND									
Seminar zu partiellen Differentialglei-	Seminar	2					*	*	4
chungen									

Eine Spezialisierung in *Partielle Differentialgleichungen* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 60 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

Modulbezeichnung: Partielle Differentialgleichungen, BaM-PDGL-k	Wahlpflicht	CP: 5
T 1 1: 1 T 1 : 1:		

Nichtlineare partielle Differentialgleichungen erster Ordnung: Vollständige Integrale, Charakteristiken, Hamilton-Jacobi-Gleichungen, hyperbolische Erhaltungsgleichungen.

Nichtlineare Partielle Differentialgleichungen zweiter Ordnung: nichtlineare Randwertprobleme, variationelle und topologische Methoden, Regularität schwacher Lösungen.

Qualifikationsziele und Kompetenzen:

Die Studierenden können exemplarische Lösungsmethoden für nichtlineare partiellen Differentialgleichungen anwenden. Sie haben Kenntnisse über nichtlineare Phänomene und deren analytische Herleitung im Rahmen partieller Differentialgleichungen erworben.

Angebotszyklus (z.B. jährlich oder je-	jährlich/zweijährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	Module BaM-AN, BaM-LA	, Kennt	$_{ m niss}$	e au	s de	r Vo	orles	ung	
Modul:	Lineare Partielle DGLen'si	nd drin	gend	l em	ipfol	hlen			
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90	-minütig	ge K	laus	ur o	der	30-r	ninü	itige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	ählten l	Lehr	vera	nst	altu	ng		
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		Ş	Sem	este	r		CP
			1	2	3	4	5	6	
Nichtlineare partielle Differentialglei-	Vorlesung + Übung	2+1					*	*	5
chungen zweiter Ordnung									
oder Nichtlineare partielle Differential-	Vorlesung + Übung	2+1					*	*	5
gleichungen erster Ordnung									

Differentialgleichungen/Differential Equations: Begrifflichkeiten, Reduktion auf Systeme erster Ordnung, explizite Lösungen spezieller Klassen, lineare Systeme, Matrix-Exponential, Existenz- und Eindeutigkeitssatz, Existenzsatz von Peano, maximale Lösung von Anfangswertproblemen, allgemeine Lösung, stetige Abhängigkeit von Anfangswerten und Parametern, Stabilität, Rand- und Eigenwertaufgaben, Lyapunov-Funktionen

Qualifikationsziele und Kompetenzen:

Die Studierenden erhalten einen Einblick in Methoden zur expliziten Lösung verschiedener Klassen von Differentialgleichungen. Sie lernen die grundlegenden Begriffe und Ergebnisse der Theorie der gewöhnlichen Differentialgleichungen kennen und beherrschen sicher die Charakterisierung der Stabilitätseigenschaften linearer autonomer Differentialgleichungen durch das Spektrum.

Angebotszyklus (z.B. jährlich oder je-	jährlich bis zweijährlich									
des Semester):										
Dauer des Moduls:	ein Semester									
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-LA1, BaM-A	N2, Bal	M-L.	A2,	Bal	I-H	4			
Modul:										
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch									
Studiennachweise (Teilnahme- / Leis-	_									
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 30-1	0						_		
prüfung oder kumulative Modulprü-	Lehrveranstaltung Differentialgleichungen/Differential Equa-									
fung) sowie Prüfungsform:	tions; 60-minütiges Referat ur zum Seminar	nd ggf. s	schri	ftlic	he A	Ausa	rbe	itun	g	
77 (1 1 1 1 "C									
Voraussetzungen für die Vergabe der CP:	bestandene Modulprüfung									
Lehrveranstaltungen	Тур	SWS		,	Sem	este	r		CP	
			1	2	3	4	5	6		
Differentialgleichungen/Differential	Vorlesung + Übung	4+2				*		*	9	
Equations										
UND										
Seminar	Seminar	2						*	4	

Eine Spezialisierung in Differentialgleichungen und Dynamische Systeme mit 22 CP erreicht man durch Hinzunahme der auf Seite 59 beschriebenen Lehrveranstaltung Lineare partielle Differentialgleichungen, 18 CP erreicht man durch Hinzunahme einer der auf Seite 62 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

Dynamische Systeme: Invariante Mengen, Konjugation, wandernde und nicht-wandernde Punkte, ω -Grenzmengen, Attraktoren, absorbierende und attrahierende Mengen, Stabilität, Lyapunov-Funktionen, invariante Maße, Linearisierung, Multiplikativer Ergodensatz, Lyapunov-Exponenten

Nichtautonome Dynamik/Non-Autonomous Dynamics: Schiefproduktflüsse, Prozesse, Pullback- und Vorwärtskonvergenz, Attraktoren

Bifurkationstheorie/Bifurcation Theory: Konzepte; lokale Bifurkationen: Sattel-Knoten, transkritische, Pitchfork, Hopf, Periodenverdopplung; globale Bifurkationen, homokline und heterokline Orbits

Qualifikationsziele und Kompetenzen:

Die Studierenden haben Verständnis für lokale und globale Stabilitätseigenschaften von Gleichgewichtslösungen entwickelt und erhalten Einblicke in die qualitative Herangehensweise an durch Differentialgleichungen beschriebene Entwicklungsgesetze. Sie haben theoretische Methoden für die Untersuchung und Klassifizierung invarianter Objekte – Fixpunkte, periodische Orbits, kompakte invariante Mengen, Attraktoren, invariante Maße – kennengelernt und ein Verständnis für lokale und globale Stabilitätseigenschaften invarianter Objekte in dynamischen Systemen entwickelt.

Angebotszyklus (z.B. jährlich oder je-	jährlich bis zweijährlich								
des Semester):									
Dauer des Moduls:	zwei Semester								
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-LA1, BaN	I-AN2, B	aM-	LA2	Ε, Βε	ıM-I	HA		
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90	-minütige	Kla	ausu	r od	er 3	0-m	inüt	ige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gev	vählten L	$_{ m ehrv}$	eran	ıstal	tung	g		
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		,	Sem	este	r		CP
			1	2	3	4	5	6	
Dynamische Systeme	Vorlesung mit Übung	2+1					*		5
oder Nichtautonome Dynamik/Non-	Vorlesung mit Übung	2+1						*	5
Autonomous Dynamics									
oder Bifurkationstheorie/Bifurcation	Vorlesung mit Übung	2+1						*	5
Theory									

Numerik von Differentialgleichungen: Numerische Lösungsverfahren für gewöhnliche Differentialgleichungen (z.B. Ein- und Mehrschrittverfahren, Runge-Kutta-Methoden, Steifigkeit und Stabilität, linear implizite Methoden, Randwertprobleme). Ausblick auf numerische Lösungsverfahren für partielle Differentialgleichungen.

Optimierung und inverse Probleme: Numerische Lösungsverfahren zur Behandlung unrestringierter Optimierungs- und Identifikationsprobleme (z.B. Optimalitätsbedingungen, Abstiegsverfahren, Newton- und Quasi-Newton-Verfahren, globalisierte Verfahren, Ausgleichsprobleme). Ausblick auf die restringierte Optimierung (z.B. Lineare Optimierung, Optimalitätsbedingungen, numerische Verfahren für nichtlineare restringierte Probleme) oder globale Optimierungsprobleme.

Numerische Dynamik: Durch gewöhnliche Differentialgleichungen erzeugte dynamische Systeme, Theorie zeitkontinuierlicher Systeme und deren Verhalten, durch numerische Verfahren erzeugte zeitdiskrete Systeme, Wirkung von Zeitdiskretisierung durch Einschrittverfahren auf Attraktoren, Sattelpunkte und Hamiltonsche Systeme.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen numerische Konzepte kennen. Sie lernen, numerische Algorithmen zu entwickeln, mathematisch zu analysieren, computergestützt zu implementieren und auf konkrete Probleme anzuwenden.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-NM								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 3	30-minü	tige	mü	ndlio	che l	Prüf	ung	zur
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltu:	ng; 60-1	nini	itig€	es R	efer	at ı	ind	ggf.
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zu	ım Sem	inar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		,	Seme	este	r		CP
			1	2	3	4	5	6	
Numerik von Differentialgleichungen	Vorlesung + Übung	4+2				*	*		9
oder Optimierung und inverse Proble-	Vorlesung + Übung	4+2				*	*		9
me									
oder Numerische Dynamik	Vorlesung + Übung	4+2				*	*		9
UND									
Seminar zur Numerik	Seminar	2				*	*	*	4

Eine Spezialisierung in Numerik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 64 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

Numerik partieller Differentialgleichungen: Numerische Lösung partieller Differentialgleichungen (z.B. Finite-Differenzen-, Finite-Elemente- und Finite-Volumen-Verfahren, Linienmethoden).

Fortgeschrittene Optimierung und inverse Probleme: Fortgeschrittene Themen der Optimierung und der inversen Probleme (z.B. restringierte Optimierung, Regularisierung schlecht-gestellter inverser Probleme oder inverse Probleme partieller Differentialgleichungen.

Stochastische Numerik: Herleitung konsistenter Methoden höherer Ordnung für stochastische Differentialgleichungen mit Hilfe der stochastischen Taylor-Entwicklung sowie deren Implementierung.

Quadraturverfahren: Eindimensionale Quadraturverfahren: Konstruktion, interpolatorische Verfahren, zusammengesetzte Verfahren; Mehrdimensionale Quadraturverfahren: Konstruktion, interpolatorische Verfahren, Monte-Carlo- und Quasi-Monte-Carlo- Verfahren, Dünngitterverfahren; Quadratur- Algorithmen: Fehlerschätzung, adaptive Verfeinerung;

Monte Carlo-Methoden: Erzeugung von Zufallszahlen im Computer, Kongruenzgeneratoren, Quasi-Zufallszahlen, allgemeine Verteilungen, Inversionsmethode, Box-Muller-Methode, Acceptance-Rejection-Methode, Erzeugung von Zufallspfaden, Markovketten, Numerische Integration, Varianzreduktion.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen fortgeschrittene und forschungsnahe numerische Konzepte kennen. Sie lernen, fortgeschrittene numerische Algorithmen zu entwickeln, mathematisch zu analysieren, computergestützt zu implementieren und auf konkrete Probleme anzuwenden.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):	Jaminen								
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-N								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 60-	-minütig	ge K	laus	ur o	der	30-r	ninü	itige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	ählten l	Lehr	vera	nsta	altui	ng		
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		Ç	Seme	ester	ſ		CP
			1	2	3	4	5	6	
Numerik partieller Differentialgl.	Vorlesung + Übung	2 + 1				*	*		5
oder Fortgeschrittene Optimierung und	Vorlesung + Übung	2 + 1				*	*		5
inverse Probleme									
oder Stochastische Numerik	Vorlesung + Übung	2 + 1				*	*		5
oder Quadraturverfahren	Vorlesung + Übung	2 + 1				*	*		5
oder Monte-Carlo-Verfahren	Vorlesung + Übung	2+1				*	*		5

Computational Finance: Finanzderivate, Marktmodelle, grundlegende Bewertungsverfahren, geschlossene Bewertungsformeln, Baumverfahren, Simulationsverfahren, PDE-basierte Verfahren.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen unterschiedliche grundlegende numerische Verfahren zur Lösung finanzmathematischer Probleme kennen. Sie erhalten erste Kenntnisse im Hinblick auf Aufwand, Genauigkeit und Konvergenz dieser Verfahren. Im Vordergrund steht außerdem die Anwendung der Verfahren mittels effizienter Implementierung der gelernten Algorithmen auf dem Computer.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-N, BaM-ES								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 3	: 30-minütige mündliche Prüfung zur							
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltu			_	s R	efer	at ı	ind	ggf.
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zu	um Sem	inar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		Ç	Sem	estei			CP
			1	2	3	4	5	6	
Computational Finance	Vorlesung + Übung	4+2				*			9
UND									
Seminar Numerische Finanzmath.	Seminar	2					*		4

Eine Spezialisierung in Numerischer Finanzmathematik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 66 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

Modulbezeichnung: Numerische Finanzmathematik, BaM-N	FM-k Wahlpflicht	CP: 5

Inverse Probleme in der Finanzmathematik: Parameterschätzung bei stochastischen Modellen, Maximum-Likelihood-Verfahren, Parameter-Kalibrierung, Optimierung.

Stochastische Numerik: Herleitung konsistenter Methoden höherer Ordnung für stochastische Differentialgleichungen mit Hilfe der stochastischen Taylor-Entwicklung sowie deren Implementierung.

Monte Carlo-Methoden: Erzeugung von Zufallszahlen im Computer, Kongruenzgeneratoren, Quasi-Zufallszahlen, allgemeine Verteilungen, Inversionsmethode, Box-Muller-Methode, Acceptance-Rejection-Methode, Erzeugung von Zufallspfaden, Markovketten, Numerische Integration, Varianzreduktion.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen unterschiedliche fortgeschrittene numerische Verfahren zur Lösung finanzmathematischer Probleme kennen. Sie erweitern ihre Kenntnisse im Hinblick auf Aufwand, Genauigkeit und Konvergenz dieser Verfahren und lernen weitere Beurteilungsmethoden hinzu. Im Vordergrund steht außerdem die Anwendung der Verfahren mittels effizienter Implementierung der gelernten Algorithmen in höheren Programmiersprachen.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-N, BaM-ES								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	1 0	abschlussprüfung: 60-minütige Klausur oder 30-minütige							
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	iche Prüfung zur gewählten Lehrveranstaltung							
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		S	$\operatorname{Sem}_{\Theta}$	estei	ſ		CP
			1	2	3	4	5	6	
Inverse Probleme in der Finanzmath.	Vorlesung + Übung	2+1				*			5
oder Stochastische Numerik	Vorlesung + Übung	2+1					*		5
oder Monte-Carlo-Verfahren	Vorlesung + Übung	2+1					*		5

Diskrete und konvexe Geometrie: Konvexität, Modelle der diskreten und konvexen Geometrie (Polytope, Polyeder, Punktkonfigurationen, Gitter, Gitterpunkte in Polytopen), algorithmische Fragestellungen

(Lineare und kombinatorische) Optimierung: Geometrische Grundlagen der Optimierung, lineare Optimierung, Dualitätstheorie, Optimierungsalgorithmen, kombinatorische Aufgabenstellungen, ganzzahlige Probleme, Graphenprobleme, Optimierungsmodelle der Spieltheorie

Kombinatorik: fundamentale Koeffizienten, Graphentheorie, Hypergraphen und Mengensysteme, erzeugende Funktionen, enumerative Kombinatorik, Polynommethode

Probabilistische Kombinatorik: probabilistische Methoden in der Diskreten Mathematik, algorithmische Aspekte

Qualifikationsziele und Kompetenzen:

Die Studierenden gewinnen Einblicke in diskrete und algorithmische Strukturen und Fragestellungen sowie ihre Verbindungen zu anderen Teilgebieten der Mathematik.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-CM, BaM-LA2, BaM-AN2								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 30-minüt								
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltung; 60-m	ninütiges Referat und ggf.							
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zum Seminar								
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Typ	SWS				este	r		CP
			1	2	3	4	5	6	
Diskrete und konvexe Geometrie	Vorlesung + Übung	4 + 2				*	*		9
oder (Lineare und kombinatorische)	Vorlesung + Übung	4+2				*	*		9
Optimierung									
oder Kombinatorik	Vorlesung + Übung	4+2				*	*		9
oder Probabilistische Kombinatorik	Vorlesung + Übung	4+2				*	*		9
UND									
Seminar zur diskreten und algorithmi-	Seminar	2				*	*	*	4
schen Mathematik									

Eine Spezialisierung in Diskreter und algorithmischer Mathematik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 68 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

CP: 13

Polytope: Seitenstruktur und Kombinatorik von Polytopen und Polyedern, Graphen von Polytopen, Schlegel-Diagramme, Upper Bound Theorem, polyedrische Unterteilungen

Semidefinite Optimierung: Konische Optimierungsprobleme, semidefinite Optimierungsprobleme, SDP-basierte Approximationsalgorithmen, Innere-Punkte-Verfahren, SDP und Summen von Quadraten, SDP-basierte Relaxationen

Polynomiale und semialgebraische Optimierung: Momentenmethode, Positivstellensätze, positive Polynome und Optimierung, Dualität, Struktur von Polynomkegeln, LP-Relaxationen, semidefinite Relaxationen, geometrische Programmierung

Polynome: Nullstellen von Polynomen, Geometrie und Kombinatorik von Polynomen, stabile Polynome, Geometrie und Kombinatorik von Amöben, algorithmische Methoden

Diskrete und konvexe Geometrie 2: Fortgeschrittene und aktuelle Themen zur diskreten und konvexen Geometrie und ihren Anwendungen

Algebraische und topologische Methoden in der diskreten Mathematik: Simpliziale Homologie, Satz von Borsuk-Ulam und kombinatorische Anwendungen, Monomideale, Stanley-Reisner-Ringe, torische und tropische Mathematik

 $Mathematische\ Spieltheorie:$ strategische Spiele, Nash-Gleichgewichte, Bimatrixspiele, n-Personen-Spiele, extensive Spiele, kooperative Modelle, algorithmische Aspekte

Qualifikationsziele und Kompetenzen:

Die Studierenden gewinnen Einblicke in diskrete und algorithmische Strukturen und Fragestellungen sowie ihre Verbindungen zu anderen Teilgebieten der Mathematik.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-CM, BaM-LA2, BaM-AN2								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-minüti	_				nini	$itig\epsilon$,	
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gewählten	Lehrver	anst	altu	ng				
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Typ	SWS		,	Sem	este	r		CP
Dem veransomonisen			1	2	3	4	5	6	
Polytope	Vorlesung + Übung	2+1				*	*		5
oder Semidefinite Optimierung	Vorlesung + Übung	2+1				*	*		5
oder Polynomiale und semialgebraische	Vorlesung + Übung	2+1				*	*		5
Optimierung									
oder Polynome	Vorlesung + Übung	2+1				*	*		5
oder Diskrete und konvexe Geometrie 2	Vorlesung + Übung	2+1				*	*		5
oder Algebraische und topologische Me-	Vorlesung + Übung	2+1				*	*		5
		1	1	1	1		ı	1 1	i .
thoden in der diskreten Mathematik									

	Modulbez.: Kombinatorik, BaM-KOM-	Gebiet: Diskr. und alg. Math.	Wahlpflicht	CP: 5
1	T 1 1, 1 T 1 , 1,			

Additive Kombinatorik: Freimans Theorem, diskrete Fourier-Analysis, Theoreme von Minkowski, Roths Theorem, Sum-Product Phänomen

Zufällige Graphen: Erdős-Renýi und verwandte Modelle, giant component, Schwellenwertfunktionen, zero-one-laws

Markovketten und zufälliges Erzeugen: Konvergenzsätze, mixing time, Metropolisprozess und Glauber dynamics, couplings, Anwendungen auf Modelle der statistischen Physik

Stochastische Analyse von Algorithmen: Irrfahrten und binäre Bäume, Binärsuchbäume, probabilistische Methode und zufällige Graphen, Galton-Watson Bäume, Heuristiken für das traveling salesman problem, Digitale Suchbäume und Lempel-Ziv Kodierung.

Qualifikationsziele und Kompetenzen:

Die Studierenden gewinnen Einblicke in diskrete und algorithmische Strukturen und Fragestellungen sowie ihre Verbindungen zu anderen Teilgebieten der Mathematik.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-CM, BaM-LA2, BaM	-AN2							
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90	-minütig	ge K	e Klausur oder 30-minütige					
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gewählten Lehrveranstaltung								
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		,	Sem	estei	r		CP
			1	2	3	4	5	6	
Additive Kombinatorik	Vorlesung + Übung	2+1				*	*		5
oder Zufällige Graphen	Vorlesung + Übung	2+1				*	*		5
oder Markovketten und zufälliges Er-	Vorlesung + Übung	2+1				*	*		5
zeugen									
oder Stochastische Analyse von Algo-	Vorlesung + Übung	2+1				*	*		5
rithmen									

Modulbezeichnung: Stochastik, BaM-STO-gs	Wahlpflicht	CP: 13
Inhalta dar Lahmanan staltum aan:		•

Stochastische Prozesse: Markov-Ketten, bedingte Erwartung und Martingale, Poisson-/ Punkt-/ Erneuerungsprozesse, Brownsche Bewegung, Stochastisches Integral und Itô-Formel.

Qualifikationsziele und Kompetenzen:

Die Studierenden haben Kenntnisse in der Modellierung und Analyse von Zufälligkeit mittels stochastischer Prozesse. Sie beherrschen grundlegende dynamische Begriffe der Stochastik.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-ES								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder	30-minü	tige mündliche Prüfung zur						
prüfung oder kumulative Modulprü-	Lehrveranstaltung Stochas	tische P	roze	esse;	60-	\min	ütig	es F	Refe-
fung) sowie Prüfungsform:	rat und ggf. schriftliche Au	sarbeitu	ng z	zum	Sen	nina	r		
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		ξ	Seme	este	r		CP
			1	2	3	4	5	6	
Stochastische Prozesse	Vorlesung + Übung	4 + 2				*			9
UND									
Seminar Wahrscheinlichkeitstheorie	Seminar	2					*		4

Eine Spezialisierung in Stochastik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 71 beschriebenen Lehrveranstaltungen, siehe dazu Seite 46.

Modulbezeichnung: Stochastik, BaM-STO-k	Wahlpflicht	CP: 5

Stochastische Populationsmodelle: Verzweigungsprozesse und zufällige Genealogien, Wright-Fisher-Modell, Moran-Modell, Multityp-Prozesse.

Stochastische Analyse von Algorithmen: Irrfahrten und binäre Bäume, Binärsuchbäume, probabilistische Methode und zufällige Graphen, Galton-Watson Bäume, Heuristiken für das traveling salesman problem, Digitale Suchbäume und Lempel-Ziv Kodierung.

Extremwerttheorie: max-Anziehungsbereiche, Satz von Fisher-Tippett-Gnedenko, Ordnungsstatistiken, Rekorde, (Poisson) Punktprozesse und deren Konvergenz

Qualifikationsziele und Kompetenzen:

Die Studierenden haben einen vertieften Einblick in die Stochastik gewonnen und studieren Modelle in einem Spezialbereich.

Angebotszyklus (z.B. jährlich oder je-	jährlich									
des Semester):										
Dauer des Moduls:	1 Semester									
Voraussetzung für die Teilnahme am	BaM-ES; Empfohlen sind Kenntnisse aus Stochastische Prozesse.									
Modul:										
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch									
Studiennachweise (Teilnahme- / Leis-	_									
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90	abschlussprüfung: 90-minütige Klausur oder 30-minütige								
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	ählten l	Lehr	vera	anst	altu:	ng			
fung) sowie Prüfungsform:										
Voraussetzungen für die Vergabe der	bestandene Modulprüfung									
CP:										
Lehrveranstaltungen	Тур	SWS		,	Sem	este	r		CP	
			1	2	3	4	5	6		
Stochastische Analyse von Algorithmen	Vorlesung + Übung	2+1			*		*		5	
oder Stochastische Populationsmodelle	Vorlesung + Übung	2+1			*		*		5	
oder Extremwerttheorie	Vorlesung + Übung	2+1					*		5	

Modulbezeichnung:	Statistik, BaM-STA-ks	Wahlpflicht	CP: 9
-------------------	-----------------------	-------------	-------

Statistik 1: Deskriptive Statistik, Schätzen mit Konfidenz, Maximum-Likelihood, Suffizienz, Testen statistischer Hypothesen (z-Test, t-Test, Wilcoxontest, Permutationstest), Einfache Varianzanalyse und lineare Regression, Ideen des Bootstrap, Datenanalyse mit dem statistischen Programmpaket R.

Statistisches Praktikum: verschiedene Themen aus der Statistik im Zusammenwirken mit Anwendern

Qualifikationsziele und Kompetenzen:

Die Studierenden haben Grundkenntnisse in statistischer Modellierung und sind vertraut mit der Analyse von Zufälligkeit. Sie kennen grundlegende Klassen stochastischer Prozesse und beherrschen grundlegenden Begriffe der Stochastik. Die Studierenden sind in der Lage, komplexe statistische Sachverhalte zu präsentieren. Sie sind vertraut, statistische Modelle zu entwickeln und mit Anwendern zu diskutieren.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-ES								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder :	30-minü	tige 1	mün	dlic	he l	Prüf	fung	zur
prüfung oder kumulative Modulprü-	Lehrveranstaltung Statistik	1; 60-m	1; 60-minütiges Referat und schrift-				rift-		
fung) sowie Prüfungsform:	liche Ausarbeitung zum Sta	atistisch	hen Praktikum						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung.								
CP:									
Lehrveranstaltungen	Тур	SWS		S	eme	este	ſ		CP
			1	2	3	4	5	6	
Statistik 1	Vorlesung + Übung	2+1			*		*		5
UND									
Statistisches Praktikum	Seminar	2				*		*	4

Eine Spezialisierung in *Statistik* mit 18 CP erreicht man durch Hinzunahme der auf Seite 70 beschriebenen Lehrveranstaltung *Stochastische Prozesse*, siehe dazu Seite 46.

Modulbezeichnung: Statistik, BaM-STA-k	Wahlpflicht	CP: 5

Statistik 2: Normales lineares Modell, mehrfaktorielle Varianzanalyse, Kovarianzanalyse, multiple Regression und Korrelation, Hauptkomponentenanalyse, multidimensionale Normalverteilung, Chiquadrattest, Delta-Methode, logistische Regression, Ideen der Modellwahl.

Statistik 3: Verallgemeinertes Lineares Modell, Diskriminanzanalyse, Bayessche Statistik, Zeitreihenmodelle, angewandte Statistik von Punktprozessen.

Qualifikationsziele und Kompetenzen:

Die Studierenden haben Kenntnisse in Modellierung erworben und sich vertraut gemacht mit der Analyse von Zufälligkeit. Sie haben grundlegende Klassen stochastischer Prozesse kennengelernt und beherrschen die grundlegenden Begriffe der Stochastik sicher.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	Kenntnisse aus Statistik 1 werden vorausgesetzt. Für Statis-					atis-			
Modul:	$tik\ 3$ werden zusätzlich Kenntnisse aus $Statistik\ 2$ vorausgesetzt.					etzt.			
(() I I I I I I I I I I I I I I I I I	D / 1 1 D 1: 1								
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-									
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	- Modulabschlussprüfung: 90-minütige Klausur oder 30-minütige						itige		
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gewählten Lehrveranstaltung								
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS		ξ	Sem	estei	ſ		CP
			1	2	3	4	5	6	
Statistik 2	Vorlesung + Übung	2+1				*		*	5
oder Statistik 3	Vorlesung + Übung	2 + 1					*		5

Modulbezeichnung: Zeitdiskrete Finanzmathematik, BaM-DF-k	Wahlpflicht	CP: 5

Vorlesung Einführung in die stochastische Finanzmathematik: Grundlagen der Maßtheorie, kohärente Risikomaße, mathematische Modellierung zeitdiskreter Finanzmärkte, No-Arbitrage-Prinzip, zeitdiskrete Martingale, Maßwechsel, Derivate europäischen Typs, vollständige und unvollständige Märkte, Nutzenoptimierung

Qualifikationsziele und Kompetenzen:

Die Studierenden haben sich mit dem Zusammenspiel ökonomischer Denkweisen und mathematisch rigoroser Modellierung vertraut gemacht. Sie haben Kenntnisse über komplexe Finanzprodukte und ihre Bewertung erworben und beherrschen die grundlegenden Begriffe der stochastischen Finanzmathematik.

Angebotszyklus (z.B. jährlich oder je-	jährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-AN, BaM-GS, BaM-	ES, VL	Sto	chas	tisc	he l	Proz	esse	(S.
Modul:	70) sollte parallel gehört werden.					·			
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 20	-minütig	ge m	ünd	lich	e Pr	üfuı	ng	
prüfung oder kumulative Modulprü-									
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Herkunft des Moduls sofern nicht aus	_								
diesem Studiengang:									
Verwendbarkeit des Moduls in anderen									
Studiengängen:									
Lehrveranstaltungen	Тур	SWS		S	eg e m	este	r		CP
			1	2	3	4	5	6	
Einführung in die stochastische Finanz-	Vorlesung + Übung	2+1				*			5
mathematik									

	Modulbezeichnung:	Stochastische	Analysis mit	Finanzmathe,	BaM-SAN-ks	Spezialisierung	CP:
ſ	T 1 1, 1 T 1	. 1.					

Vorlesung Stochastische Analysis mit Finanzmathematik: Stochastisches Integral für linksstetige Integranden und Semimartingale als Integratoren, Itô-Formel, Girsanov-Meyer-Theorem, Vermögensdynamiken in stetiger Zeit, Black-Scholes-Modell, implizite Volatilitäten, Sprungrisiko

Finanzmathematisches Seminar: wechselnde Themen aus der stochastischen Finanzmathematik

Qualifikationsziele und Kompetenzen:

Die Studierenden haben grundlegende Ideen der stochastischen Analysis kennengelernt. Sie haben einen ersten Einblick in die zeitstetige Modellierung von Finanzmärkten gewonnen und studieren einfache Modelle, die in der Praxis angewendet werden.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	Modulteilprüfung Stochastische Pr	ozesse i	n Ba	aM-S	$\overline{\text{STC}}$)-gs	(S.	70)	
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 20-minüt	ige mür	ndlic	he :	Prüf	iung	zu	r	
prüfung oder kumulative Modulprü-	Lehrveranstaltung Vorlesung Stoe	chastisch	he A	lnal	ysis	mit	t Fi	-	
fung) sowie Prüfungsform:	nanzmathematik; Referat mit schri	ftlicher	Ausa	arbe	eitun	ıg in	n Se	-	
	minar.								
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Herkunft des Moduls sofern nicht aus	_								
diesem Studiengang:									
Verwendbarkeit des Moduls in anderen									
Studiengängen:									
Lehrveranstaltungen	Тур	SWS		Ç	Seme	estei	r		CP
			1	2	3	4	5	6	
Stochastische Analysis mit Finanzma-	Vorlesung + Übung	2+1					*		5
thematik									
Finanzmathematisches Seminar	Seminar	2					*		4

Eine Spezialisierung in Finanzmathematik mit 23 CP erreicht man durch Hinzunahme der auf den Seiten 70 und 74 beschriebenen Lehrveranstaltungen Stochastische Prozesse und Einführung in die stochastische Finanzmathematik, siehe dazu Seite 46.

Allgemeine berufsvorbereitende Veranstaltungen	BaM-SK	CP: 12
Lehrveranstaltung	SWS	CP
Berufspraktikum (lange Variante)	_	12
oder		
Berufspraktikum (kurze Variante)	_	9
Kommunikation	2 V	3
oder		
Tutoriumsleitung	_	9
Kommunikation	2 V	3
oder		
Programmierpraktikum Computational Finance	_	9
Kommunikation	2 V	3

Modulhozoichnung	Programmierpraktikum, BaM-PCF	Wahlpflicht	$\perp CD \cdot 0$
Moduibezeichnung.	1 Togrammer praktikum, Dawi-1 Cr	wampinent	01.3

Programmierpraktikum Computational Finance: Finanzderivate, Marktmodelle, grundlegende Bewertungsverfahren, geschlossene Bewertungsformeln, Baumverfahren, Simulationsverfahren, PDE-basierte Verfahren, effiziente Implementierung.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen unterschiedliche grundlegende numerische Verfahren zur Lösung finanzmathematischer Probleme kennen. Sie erhalten Kenntnisse im Hinblick auf Aufwand, Genauigkeit, Konvergenz und Implementierung dieser Verfahren. Im Vordergrund steht die Implementierung der gelernten Algorithmen in einer höheren Programmiersprache.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich								
des Semester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-N, BaM-ES, grundleg	ende Pı	rogra	mm	ierk	cenn	tnis	se iı	n ei-
Modul:	ner höheren Programmiers	orache (z.B.	Java	a, C	(pp)			
(ggf.) Lehr- und Prüfungssprache:	Deutsch								
Studiennachweise (Teilnahme- / Leis-	LN: Übungsaufgaben								
tungsnachweise):									
Voraussetzungen für die Vergabe der	Erreichen von mindestens 50) % der :	zu ve	ergeb	oene	en Ü	bun	gspi	unk-
CP:	te und regelmäßige Teilnah	me an d	len Ü	Jbun	igen	1.			
Lehrveranstaltungen	Тур	SWS		S	eme	este	r		CP
			1	2	3	4	5	6	
Programmierpraktikum Computatio-	Vorlesung + Übung	2 + 4				*			9
nal Finance									

Das Programmierpraktikum Computational Finance in Kombination mit dem jährlich angebotenen Kurs Kommunikation kann als Alternative zum Berufspraktikum eingebracht werden.

Modulbezeichnung: Anleitung zur Statistischen Beratung, BaM-SK-K Wahlpflicht	CP: 3
--	-------

Inhalte der Lehrveranstaltungen zu Kommunikation:

Anleitung zur Statistischen Beratung: Diskussion von Fallbeispielen aus der Statistischen Beratung.

Qualifikationsziele und Kompetenzen:

Die Studierenden machen sich vertraut mit allen Aspekten angewandter statistischer Beratung, wie Diskussion mit dem Anwender, Herausarbeitung der Hauptfragen, Übersetzung in statistische Fragestellungen, Diskussion von Modellansätzen, Anwendung einfacher statistischer Verfahren und Erstellung und Auswahl graphischer Darstellungen sowie eines Kurzberichts für den Anwender.

Angebotszyklus (z.B. jährlich oder je-	jährlich oder zweijährlich							
des Semester):								
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	Statistik 1							
Modul:								
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	LN: Bearbeitung von 1-2 Fallbeispielen mit Präsentation und							
tungsnachweise):	Kurzbericht							
77	: 1							
Voraussetzungen für die Vergabe der	siehe Studiennachweise							
CP:								
Lehrveranstaltungen	Typ	SWS		Sem	este	r		CP
			1 2	3	4	5	6	
Anleitung zur Statistischen Beratung	Proseminar	2			*		*	3

Das Proseminar Anleitung zur Statistischen Beratung stellt eine Möglichkeit für die Veranstaltung Kommunikation im Modul BaM-SK dar.

Modulbezeichnung: Präsentation zum Statistischen Praktikum,	BaM-SK-K	Wahlpflicht	CP: 2
---	----------	-------------	-------

Inhalte der Lehrveranstaltungen zu Kommunikation:

Präsentation zum Statistischen Praktikum: Präsentation der Hauptergebnisse aus dem Statistischen Praktikum in einer anwenderfreundlichen Kurzvortragsreihe.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen, die Hauptbotschaften ihres im Statistischen Praktikum erarbeiteten mathematisch-statistischen Themas herauszuarbeiten und in gut verständlicher und knapper Form (ca. 10 Min) in einem Kurzvortrag zusammen zu fassen. Sie erlernen geeignete graphische Darstellungen der Hauptbotschaften und prägnante und formal präzise Formulierungen, die auch für Anwender verständlich sein sollen.

Angebotszyklus (z.B. jährlich oder je-	jährlich oder zweijährlich, zum Statistischen Praktikum								
des Semester):		· ·							
Dauer des Moduls:	Blockveranstaltung am Semesterer	nde							
Voraussetzung für die Teilnahme am	Statistik 1, Statistisches Praktikur	n							
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	Präsentation der Hauptergebnisse aus dem Statistischen								
tungsnachweise):	Praktikum in einem anwenderfreundlichen Kurzvortrag								
Voraussetzungen für die Vergabe der	siehe Studiennachweise								
CP:									
Lehrveranstaltungen	Тур	SWS	S Semester CP						
			1	2	3	4	5	6	
Präsentation zum Statistischen Prakti-	Proseminar					*		*	2
kum									

Das Proseminar Präsentation zum Statistischen Praktikum kann in das Modul BaM-SK eingebracht werden. Um auf die geforderten 3 CPs für die Veranstaltung *Kommunikation* zu kommen, kann beispielsweise durch ein Softskill-Modul mit 1 CP ergänzt werden.

Abschlussmodul	BaM-AM	CP: 15
Lehrveranstaltung	SWS	CP
Bachelorarbeit	_	12
Abschlussseminar	_	3

Anhang 4: Modulbeschreibungen/Bachelor/Anwendungsfach

Hier sind folgende Anwendungsfächer für das Bachelorstudium ausgeführt:

Anwendungsfach	FB	Seite
Betriebswirtschaftslehre	02	81
Finanzwirtschaft (Finance)	02	82
Volkswirtschaftslehre	02	83
Geowissenschaften	11	84
Meteorologie	11	86
Informatik	12	88
Experimentelle Physik	13	89
Theoretische Physik	13	90
Chemie	14	91
Biowissenschaften	15	92

Für die in diesem Abschnitt aufgeführten Module gelten die Modulbeschreibungen und die Bedingungen zum Erwerb von CP entsprechend den aktuell gültigen Fassungen der Prüfungsordnungen derjenigen Fachbereiche, welche diese Module anbieten. Darüber hinaus finden sich in den jeweiligen Prüfungsordnungen aktuelle und ausführliche Beschreibungen der Module, weshalb hier nur grobe Übersichten über die jeweils angebotenen Module aufgeführt sind.

Anwendungsfach Betriebswirtschaftslehre–FB 2

Das Anwendungsfach umfasst die Teile "Einführung in die Betriebswirtschaftslehre" und "Betriebswirtschaftliche Basiskurse", die zusammen in vier Module aufgeteilt sind. Dazu kommt ein Modul "Wirtschaftsinformatik", das in der Verantwortung des FB 12/Informatik angeboten wird.

Einführung in die Betriebswirtschaftslehre: Finanzen	BaM-AFBW-1	CP: 5
Lehrveranstaltung	SWS	CP
Finanzen 1 / (OFIN)	2 V 1 Ü	5

Einführung in die Betriebswirtschaftslehre: Marketing	BaM-AFBW-2	CP: 5
Lehrveranstaltung	SWS	CP
Marketing 1 / (OMAR)	2 V 1 Ü	5

Betriebswirtschaftlicher Basiskurs: Rechnungswesen	BaM-AFBW-3	CP: 6
Lehrveranstaltung	SWS	CP
Accounting 1 / (BACC)	2 V 1 Ü 1 M *)	6

^{*) 1} M heißt 1 Mentorium.

Betriebswirtschaftlicher Basiskurs: Management	BaM-AFBW-4	CP: 6
Lehrveranstaltung	SWS	CP
Management 1/(BMGT)	2 V 1 Ü 1 M *)	6

^{*) 1} M heißt 1 Mentorium.

Wirtschaftsinformatik	BaM-AFBW-5	CP: 2
Lehrveranstaltung	SWS	CP
Elemente der Wirtschaftsinformatik	2 V	2

Anwendungsfach Finanzwirtschaft (Finance) – FB 2

Das Anwendungsfach umfasst die Module "Finanzen 1-3" sowie ein Spezialisierungsmodul. Dazu kommt ein Modul "Wirtschaftsinformatik", das in der Verantwortung des FB 12/Informatik angeboten wird.

Finanzwirtschaft	BaM-AFFW-1	CP: 17
Lehrveranstaltung	SWS	CP
Finanzen 1 (OFIN)	2 V 1 Ü	5
Finanzen 2 (BFIN)	2 V 1 Ü	6
Finanzen 3 (PFIN)	2 V 1 Ü	6

Spezialisierung (Special topic)	BaM-AFFW-2	CP: 5
Lehrveranstaltung	SWS	CP
Financial Risk Management	3 V mit Ü	5
oder		
Derivatives 1: Discrete Time Models	3 V mit Ü	5

Wirtschaftsinformatik	BaM-AFFW-3	CP: 2
Lehrveranstaltung	SWS	CP
Elemente der Wirtschaftsinformatik	2 V	2

Anwendungsfach Volkswirtschaftslehre–FB 2

Das Anwendungsfach umfasst die Bereiche "Einführung in die Volkswirtschaftslehre" und "Volkswirtschaftslicher Basiskurs". Dazu kommt ein Modul "Wirtschaftsinformatik", das in der Verantwortung des FB 12/Informatik angeboten wird.

Einführung in die Volkswirtschaftslehre	BaM-AFVW-1	CP: 10
Lehrveranstaltung	SWS	CP
Einführung in die Volkswirtschaftslehre / (OVWL)	4 V 2 Ü	10

Volkswirtschaftlicher Basiskurs	BaM-AFVW-2	CP: 12
Lehrveranstaltung	SWS	CP
Mikroökonomie 1/(BMIK)	4 V 2 Ü 1 M *)	12
oder		
Makroökonomie 1	4 V 2 Ü 1 M *)	12

^{*) 1} M heißt 1 Mentorium.

Wirtschaftsinformatik	BaM-AFVW-3	CP: 2
Lehrveranstaltung	SWS	CP
Elemente der Wirtschaftsinformatik	2 V	2

Anwendungsfach Geowissenschaften – FB 11

Option A:

Vertiefung Geophysik (BaM-AFGW-1, BaM-AFGW-2 und BaM-AFGW-3 oder BaM-AFGW-4). Insgesamt 25 CP.

Option B:

Vertiefung Kristallographie (BaM-AFGW-1, BaM-AFGW-5 und BaM-AFGW-6). Insgesamt 25 CP.

Geowissenschaften	BaM-AFGW-1	CP: 11
Lehrveranstaltung	SWS	CP
Geomaterialien	4 V / Ü	5
System Erde	4 V	4
Kartenkunde	2 Ü	2

Geophysik I	BaM-AFGW-2	CP: 6
Lehrveranstaltung	SWS	CP
Einführung in die Geophysik I	3 V / Ü	3
Einführung in die Geophysik II	2 V / Ü	3

Geophysik II	BaM-AFGW-3	CP: 8
Lehrveranstaltung *)	SWS	CP
Geodynamik: Plattentektonik und Rheologie	2 V 1 Ü	4
oder	'	
Numerische Methoden in der Geophysik	2 V 1 Ü	4
oder		•
Digitale Signalverarbeitung I	2 V 1 Ü	4
oder		•
Angewandte Geoelektrik	2 V 1 Ü	4
oder		
Spezielle Themen aus der Angewandten Geophysik	2 V 1 Ü	4
oder		
oder		
Spezielle Themen aus der Allgemeinen Geophysik	2 V 1 Ü	4
oder		
Geodynamik: Fluiddynamik und Wärmetransport	2 V 1 Ü	4
oder		
Einführung in die Seismologie	2 V 1 Ü	4
oder		
Statistische Methoden	2 V 1 Ü	4
oder		
Magnetotellurik	2 V 1 Ü	4
oder		
Physik der Magmen und Vulkane	2 V 1 Ü	4
oder		
Fels- und Bodenmechanik	2 V 1 Ü	4
*) Aug diagom Modul gind 2 Lahrvorangtaltungan augzuwi	21-1	-

^{*)} Aus diesem Modul sind 2 Lehrveranstaltungen auszuwählen.

Geophysik III	BaM-AFGW-4	CP: 8
Lehrveranstaltung *)	SWS	CP
Figur und Schwerefeld	2 V 1 Ü	4
oder		
Inversion geophysikalischer Daten	2 V 1 Ü	4
oder	·	
Spezielle Themen der Seismologie	2 V 1 Ü	4
oder		
Angewandte Seismik	2 V 1 Ü	4
oder		
Impaktphänomene	2 V 1 Ü	4
oder		
Magnetismus der Erde	2 V 1 Ü	4
oder		
Digitale Signalverarbeitung II	2 V 1 Ü	4
oder		
Methoden und Verfahren der Seismologie	2 V 1 Ü	4
oder		
Angewandte Gravimetrie und Magnetik	2 V 1 Ü	4
oder		
Gesteinsphysik	2 V 1 Ü	4

^{*)} Aus diesem Modul sind zwei Lehrveranstaltungen auszuwählen.

Mineralogie I	BaM-AFGW-5	CP: 6
Lehrveranstaltung	SWS	CP
Einführung in die Mineralogie	2 V / Ü	2.5
Kristallographie/Kristallchemie	2 V / Ü	3.5

Kristallographie	BaM-AFGW-6	CP: 10
Lehrveranstaltung	SWS	CP
Kristallstrukturbestimmung	2 V 1Ü	3,5
Kristallchemie	2 V	2
Mineralphysik	2 V	2,5
Kristallographisches Seminar	1 S	2

${\bf Anwendungs fach\ Meteorologie-FB\ 11}$

Für das Anwendungsfach Meteorologie ist aus den Module BaM-AFM-1 und BaM-AFM-2 mindestens eines verpflichtend zu wählen. Aus den Module BaM-AFM-3 bis BaM-AFM-13 sind zusätzlich Module zu wählen, um insgesamt mindestens 24 CP zu erreichen.

Allgemeine Meteorologie und Klimatologie	BaM-AFM-1	CP: 10
Lehrveranstaltung	SWS	CP
Allgemeine Meteorologie	3 V 2 Ü	6
Allgemeine Klimatologie	2 V 1 Ü	4

Atmospheric Dynamics	BaM-AFM-2	CP: 10
Lehrveranstaltung	SWS	CP
Atmospheric Dynamics 1	2 V 2 Ü	5
Atmospheric Dynamics 2	2 V 2 Ü	5

Numerical Weather Prediction und Wetterbesprechung	BaM-AFM-3	CP: 5
Lehrveranstaltung	SWS	CP
Numerical Weather Prediction	2 V 1 Ü	4
Wetterbesprechung	1 V	1

Physik und Chemie der Atmosphäre 1	BaM-AFM-4	CP: 7
Lehrveranstaltung	SWS	CP
Physik und Chemie der Atmosphäre 1	3 V 2 Ü	7

Atmosphärendynamik 3	BaM-AFM-5	CP: 7
Lehrveranstaltung	SWS	CP
Atmosphärendynamik 3	3 V 2 Ü	7

Meteorologisches Praktikum	BaM-AFM-6	CP: 4
Lehrveranstaltung	SWS	CP
Meteorolog. Instrumentenpraktikum	2 PR	4

Meteorologisches Seminar	BaM-AFM-7	CP: 4
Lehrveranstaltung	SWS	CP
Seminar aus dem Bereich der experimentellen oder theoretischen	2 S	4
Meteorologie		

Klimawandel	BaM-AFM-8	CP: 4
Lehrveranstaltung	SWS	CP
Klimawandel	2 V 1 Ü	4

Atmosphärische Strahlung	BaM-AFM-11	CP: 4
Lehrveranstaltung	SWS	CP
Atmosphärische Strahlung	2 V 1 Ü	4

Statistische Methoden in Meteorologie und Klimatologie	BaM-AFM-12	CP: 4
Lehrveranstaltung	SWS	CP
Statistische Methoden in Meteorologie und Klimatologie	2 V 1 Ü	4

Synoptik	BaM-AFM-13	CP: 4
Lehrveranstaltung	SWS	CP
Synoptische Meteorologie	2 V 1 Ü	4

$An wendungs fach\ Informatik-FB\ 12$

Für das Anwendungsfach Informatik sind aus folgender Liste Veranstaltungen im Umfang von mindestens $24~\mathrm{CP}$ zu wählen.

Datenstrukturen	BaM-AFI-1	CP: 5
Lehrveranstaltung	SWS	CP
Datenstrukturen	2 V 1 Ü	5

Theoretische Informatik 1	BaM-AFI-2	CP: 10
Lehrveranstaltung	SWS	CP
Theoretische Informatik 1	4 V 2 Ü 0.5 E *)	10

^{*)} E heißt Ergänzungsübung.

Hardwarearchitekturen und Rechensysteme	BaM-AFI-3	CP: 8
Lehrveranstaltung	SWS	CP
Hardwarearchitekturen und Rechensysteme	3 V 2 Ü	8

Programmierung 1	BaM-AFI-4	CP:11
Lehrveranstaltung	SWS	CP
Grundlagen der Programmierung 1	2 V 2 Ü	6
Einführung in die Programmierung	1 V 2 Ü	5

Programmierung 2	BaM-AFI-5	CP: 8
Lehrveranstaltung	SWS	CP
Grundlagen der Programmierung 2	3 V 2 Ü	8

${\bf An wendungs fach\ Experimental physik-FB\ 13}$

Einführung in die Physik	BaM-AFEP-1	CP: 18
Lehrveranstaltung	SWS	CP
Experimentalphysik 1: Mechanik und Thermodynamik	4 V 2 Ü	10
Experimentalphysik 2: Elektrodynamik	4 V 2 Ü	8

Anfängerpraktikum	BaM-AFEP-2	CP: 8
Lehrveranstaltung	SWS	CP
Anfängerpraktikum 1	4 P	8
oder		
Anfängerpraktikum 2	4 P	8

Für den Fall mangelnder Aufnahmekapazität in den Praktika wird auf die in der Ordnung des Bachelorstudiengangs Physik bestehende Regelung verwiesen.

Anwendungsfach Theoretische Physik – FB 13

Theoretische Physik A	BaM-AFTP-1	CP: 8
Lehrveranstaltung	SWS	CP
Theoretische Physik 1:		
Mathematische Methoden der Theoretischen Physik	4 V 2,5 Ü	8

Theoretische Physik B	BaM-AFTP-2	CP: 8
Lehrveranstaltung	SWS	CP
Theoretische Physik 2: Klassische Mechanik	4 V 2,5 Ü	8

Theoretische Physik C	BaM-AFTP-3	CP: 8
Lehrveranstaltung	SWS	CP
Theoretische Physik 3: Klassische Elektrodynamik	4 V 2,5 Ü	8
oder		
Theoretische Physik 4: Quantenmechanik	4 V 2,5 Ü	8

Anwendungsfach Chemie – FB 14

Für das Anwendungsfach Chemie ist das Modul BaM-AFC-1 verpflichtend. Aus den Modulen BaM-AFC-2 bis BaM-AFC-11 sind zusätzlich Module zu wählen, um insgesamt mindestens 24 CP zu erreichen.

Grundlagen der Allgemeinen und Anorganischen Chemie	BaM-AFC-1	CP: 7
Lehrveranstaltung	SWS	CP
Allgemeine und Anorganische Chemie für Naturwissenschaftler	4 V 1 Ü	7

Allgemeine und Anorganische Chemie	BaM-AFC-2	CP: 4
Lehrveranstaltung	SWS	CP
Praktikum und Seminar		
Allgemeine und Anorganische Chemie für Naturwissenschaftler	3 P 1 S	4

Festkörperchemie	BaM-AFC-3	CP: 3
Lehrveranstaltung	SWS	CP
Anorganische Chemie II	2 V	3

Analytische Methoden	BaM-AFC-4	CP: 3
Lehrveranstaltung	SWS	CP
Analytische Methoden	2 V	3

Grundlagen der Organischen Chemie	BaM-AFC-5	CP: 7
Lehrveranstaltung	SWS	CP
Organische Chemie I	4 V 1 Ü	7

Thermodynamik	BaM-AFC-6	CP: 6
Lehrveranstaltung	SWS	CP
Physikalische Chemie I	3 V 1 Ü	6

Statistische Thermodynamik und Kinetik	BaM-AFC-7	CP: 5
Lehrveranstaltung	SWS	CP
Physikalische Chemie II	2 V 1 Ü	5

Molekulare Spektroskopie	BaM-AFC-8	CP: 5
Lehrveranstaltung	SWS	CP
Physikalische Chemie III	2 V 1 Ü	5

Physikalisch-Chemische Experimente	BaM-AFC-9	CP: 6
Lehrveranstaltung	SWS	CP
Physikalische Chemie I	8 P	6

Grundlagen der Theoretischen Chemie	BaM-AFC-10	CP: 6
Lehrveranstaltung	SWS	CP
Theoretische Chemie I	3 V 1 Ü	6

$Anwendungs fach\ Biowissenschaften-FB\ 15$

Für das Anwendungsfach Biowissenschaften sind aus folgender Liste Veranstaltungen im Umfang von mindestens 24 CP zu wählen. Das Modul BaM-AFB-3 (Grundlagen der Bioinformatik) stammt aus dem Bachelorstudiengang Bioinformatik, der vom FB 12 (Lehreinheit Informatik) koordiniert wird.

Struktur und Funktion der Organismen	BaM-AFB-1	CP: 6
Lehrveranstaltung	SWS	CP
Struktur und Funktion der Organismen	4 V	6

Diversität der Organismen und Lebensräume	BaM-AFB-2	CP: 6
Lehrveranstaltung	SWS	CP
Diversität der Organismen und Lebensräume	4 V	6

Grundlagen der Bioinformatik	BaM-AFB-3	CP: 6
Lehrveranstaltung	SWS	CP
Grundlagen der Bioinformatik	2 V 2 Ü	6

Biochemie und Zellbiologie	BaM-AFB-4	CP: 6
Lehrveranstaltung	SWS	CP
Biochemie	2 V	3
Zellbiologie	2 V	3

Molekularbiologie und Genetik	BaM-AFB-5	CP: 6
Lehrveranstaltung	SWS	CP
Molekularbiologie	2 V	3
Genetik	2 V	3

Ökologie und Evolution	BaM-AFB-6	CP: 6
Lehrveranstaltung	SWS	CP
Ökologie	2 V	3
Evolutionsbiologie	2 V	3

Neurobiologie und Tierphysiologie	BaM-AFB-7	CP: 6
Lehrveranstaltung	SWS	CP
Neurobiologie	2 V	3
Tierphysiologie	2 V	3

Pflanzenphysiologie und Mikrobiologie	BaM-AFB-8	CP: 6
Lehrveranstaltung	SWS	CP
Pflanzenphysiologie	2 V	3
Mikrobiologie	2 V	3

Anhang 5: Modulbeschreibungen/Master/Hauptfach

Auf den folgenden Seiten werden die Wahlpflichtmodule im Hauptfachbereich des Masterstudiums exemplarisch durch sogenannte "Elementarmodule" beschrieben. Die hier auftretenden Bezeichnungen und Kombinationsmöglichkeiten gelten analog zu den auf Seite 46 für das Bachelorstudium beschriebenen Regeln für den Umgang mit Elementarmodulen. Die Lehrveranstaltungen in den Modulen des Hauptfaches sind zum Teil identisch mit denen in Modulen im Vertiefungsbereich des Bachelorstudiengangs.

Jedes Wahlpflichtmodul ist Teil eines der folgenden Gebiete:

Gebiet	Kürzel	Seite
Algebraische Geometrie	MaM-AG, MaM-LAG	94, 96
Zahlentheorie	MaM-ZT	98
Topologie	MaM-TOP	100
Geometrische Analysis	MaM- GA , MaM - HDG	102, 104
Fortgeschrittene Funktionalanalysis	MaM-FFA	106
Fortgeschrittene Partielle Differentialgleichungen	MaM-FPD	108
Dynamische Systeme	MaM-DynSyst	110
Fortgeschrittene Numerik	MaM-FN	112
Fortgeschrittene Numerische Finanzmathematik	MaM-FNFM	114
Advanced Discrete and Computational Mathematics	MaM-ADCM	116
Diskrete und algebraische Strukturen und Algorithmen	MaM-DASA	118
Probabilistische und Extremale Kombinatorik	MaM-PEK	120
Stochastik	MaM-STO	122
Statistik	MaM-STA	124
Finanzmathematik in stetiger Zeit	MaM- KF	126
Stochastische Analysis mit Finanzmathematik	MaM-StochAna	127
Zeitdiskrete Finanzmathematik	MaM-DisFin	128

Zusätzlich zu den Wahlpflichtmodulen gehören folgende Module zum Hauptfachbereich des Masterstudiums:

- Kolloquiumsmodul (Seite 129)
- Masterarbeit (Seite 129)

In der zu Beginn des Masterstudiums stattfindenden Orientierungsveranstaltung wird das für die darauffolgenden drei Semester geplante Lehrveranstaltungs- und Modulangebot des Master-Hauptfachbereichs vorgestellt. Dieser Katalog wird im Netz auf den Informationsseiten zu Studium und Lehre veröffentlicht. Dasselbe gilt für nachträgliche Modifikationen der Planung wie z.B. nachträglich in das Angebot aufgenommenen Lehrveranstaltungen.

Die Studierenden können sich im Rahmen der Vorgaben zwischen den angebotenen Modulformaten entscheiden. Bei dem Modul, das ein Seminar enthält (Format $\dots s$), ist im Seminar eine Prüfungsleistung als Teil einer kumulativen Modulprüfung zu erbringen.

Den Studierenden wird dringend empfohlen, an der Orientierungsveranstaltung für das Masterstudium teilzunehmen und ihre Planungen frühzeitig mit den Dozentinnen und Dozenten der betreffenden Lehrveranstaltungen abzustimmen. Damit wird ein guter Kompromiss zwischen einer freien Gestaltung des Studiums und der Planbarkeit – auch in Hinblick auf die Reduktion der Prüfungslast – erreicht.

Die Verwendbarkeit der jeweiligen Module in anderen Studiengängen ergibt sich aus den Ordnungen der entsprechenden Fachbereiche, jeweils in der aktuell gültigen Fassung.

Modulbezeichnung: Algebraische Geometrie, MaM-AG-gs	Wahlpflicht	CP: 13
T 1 1, 1 T 1 , 1, 1		

 $Algebraische\ Geometrie\ I$: Garbentheorie, Schemata und ihre Morphismen, algebraische Kurven.

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen grundlegende Kenntnisse in einem Vertiefungsgebiet der Algebraischen Geometrie und können diese sicher anwenden. Ihre Kenntnisse erlauben eine weitere Vertiefung in diesem Gebiet.

Angebotszyklus:	zweijährlich						
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	Empfohlen sind Kenntnisse	aus der	auf	Seit	e 47	bes	schriebenen
Modul:	Lehrveranstaltung Algebra						
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	90-minütigen Klausur oder 20-30-minütige mündlichen						
prüfung oder kumulative Modulprü-	- Prüfung zur Lehrveranstaltung Algebraische Geometrie I;						
fung) sowie Prüfungsform:	ca. 60-minütiges Referat u	and ggf.	schr	iftli	che	Aus	sarbei-
	tung zum Seminar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	Semester		CP		
			1	2	3	4	
Algebraische Geometrie	Vorlesung + Übung	4 + 2	*		*		
UND							
Seminar	Seminar	2		*		*	

Eine Spezialisierung in Algebraischer Geometrie mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 95 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93.

Modulbezeichnung: Algebraische Geometrie MaM-AG-k	Wahlpflicht	CP: 5
Inhalta dar Lahmaman et altum ann:		

Algebraische Geometrie II: Eigenschaften von Schemata und ihren Morphismen, Kohomologietheorie.

Qualifikationsziele und Kompetenzen:

Die Studierenden erwerben vertiefte Kenntnisse in Algebraischer Geometrie. Sie sind qualifiziert, diese in einem Seminar oder einer Abschlussarbeit anzuwenden.

Angebotszyklus:	zweijährlich				
Dauer des Moduls:	2 Semester				
Voraussetzung für die Teilnahme am	Kenntnisse aus der auf Seite 47 beschriebenen Lehrveran-				
Modul:	staltung Algebra und aus der Algebraischen Geometrie 1				
	sind dringend empfohlen.				
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch				
Studiennachweise (Teilnahme- / Leis-	_				
tungsnachweise):					
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 60-minü	tige Klausur oder 20-30-			
prüfung oder kumulative Modulprü-	minütige mündliche Prüfung zur	Lehrveranstaltung Algebrai-			
fung) sowie Prüfungsform:	sche Geometrie II				
Voraussetzungen für die Vergabe der	bestandene Modulprüfung				
CP:					
Lehrveranstaltungen	Typ SWS	Semester CP			
		1 2 3 4			
Algebraische Geometrie II	$Vorlesung + \ddot{U}bung$ 2 + 1	* * 5			

Modulbez.: Lineare Alg. Gruppen, MaM-LA	G-gs Gebiet: Algebraische Geometrie	Wahlpflicht	CP: 13
Inhalte der Lehrveranstaltungen:			

Lineare Algebraische Gruppen I: Lineare Algebraische Gruppen, Tori, auflösbare Gruppen, Liealgebren.

Qualifikationsziele und Kompetenzen:

Die Studierenden erwerben grundlegende Kenntnisse in der Theorie der Linearen Algebraischen Gruppen und können diese sicher anwenden. Ihre Kenntnisse erlauben ihnen den Besuch weiterführender Veranstaltungen.

Angebotszyklus:	zweijährlich						
Dauer des Moduls:	2 Semester						
Voraussetzung für die Teilnahme am	Empfohlen sind Kenntnisse	aus der auf Seite	17 b	esch	rieb	ener	1
Modul:	Lehrveranstaltung Algebra						
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	ů –						
prüfung oder kumulative Modulprü-	i- Prüfung zur Lehrveranstaltung Lineare Algebraische						
fung) sowie Prüfungsform:	Gruppen I; ca. 60-minütige	es Referat und ggf.	schi	riftli	che		
	Ausarbeitung zum Seminar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	,	Sem	este:	r	CP
			1	2	3	4	
Lineare Algebraische Gruppen I	Vorlesung + Übung	4+2	*		*		9
UND							
Seminar	Seminar	2		*		*	4

Eine Spezialisierung in *Lineare Algebraischen Gruppen* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 97 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93.

Modulbez.g: Lineare Alg. Gruppen MaM-LAG-k | Gebiet: Algebraische Geometrie | Wahlpflicht | CP: 5 Inhalte der Lehrveranstaltungen:

Lineare Algebraische Gruppen II: Parabolische, Flaggenvarietäten, Strukturtheorie linearer algebraischer Gruppen.

Wurzelsysteme: Spiegelungen und Wurzelsysteme, reduziert und irreduzibel, Kammern und Basen, Dynkindiagramme, Klassifikation.

Gebäude: Coxetergruppen, Tits-Systeme, Sphärische Gebäude.

Qualifikationsziele und Kompetenzen:

Die Studierenden erwerben vertiefte Kenntnisse in der Theorie linearer algebraischer Gruppen. Sie können diese in einem Seminar oder einer Abschlussarbeit sicher anwenden.

Angebotszyklus:	zweijährlich						
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	Empfohlen sind Kenntnisse aus der auf Seite 47 beschriebenen						
Modul:	Lehrveranstaltung Algebra und aus der auf Seite 96 beschriebe-						
	nen Lehrveranstaltung <i>Line</i>	eare Algebraische (Grup	pen	I		
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	s- Modulabschlussprüfung: 60-minütige Klausur oder 20-30-						
prüfung oder kumulative Modulprü-	- minütige mündliche Prüfung zur gewählten Lehrveranstal-						
fung) sowie Prüfungsform:	tung						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	6	Seme	este	r	CP
			1	2	3	4	
Lineare Algebraische Gruppen II	Vorlesung + Übung	2 + 1		*		*	5
oder Wurzelsysteme	Vorlesung + Übung	2 + 1		*		*	5
oder Gebäude	Vorlesung + Übung	2 + 1		*		*	5

Modulbezeichnung: Zahlentheorie, MaM-ZT-gs	Wahlpflicht	CP: 13
T 1 1, 1 T 1 , 1,		

Qualifikationsziele und Kompetenzen:

Die Studierenden sind kompetent im Umgang mit tieferliegenden Konzepten der Zahlentheorie (z.B. Verzweigung, Galoiskohomologie). Sie sind qualifiziert, das Erarbeitete in einem Seminar und weiterführenden Vorlesungen auf forschungsorientiertem Niveau anzuwenden.

Angebotszyklus:	zweijährlich						
Dauer des Moduls:	2 Semester						
Voraussetzung für die Teilnahme am	Empfohlen sind Kenntnisse	aus der	auf	Seit	e 51	bes	schriebenen
Modul:	Lehrveranstaltung Grundlagen der algebraischen Zahlentheorie						
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	s- 90-minütige Klausur oder 20-30-minütige mündliche Prü-						
prüfung oder kumulative Modulprü-	fung zur Lehrveranstaltung Algebraische Zahlentheorie;						
fung) sowie Prüfungsform:	ca. 60-minütiges Referat u	and ggf.	schr	iftli	che	Aus	sarbei-
	tung zum Seminar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	Semester CI			CP	
			1	2	3	4	
Algebraische Zahlentheorie I	Vorlesung + Übung	4 + 2	*		*		9
UND							
Seminar	Seminar	2		*		*	4

Eine Spezialisierung in Zahlentheorie mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 99 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93.

Modulbezeichnung: Zahlentheorie, MaM-ZT-k	Wahlpflicht	CP: 5

Algebraische Zahlentheorie II: globale Klassenkörpertheorie, arithmetische Dualitätstheorie.

Arithmetik Elliptischer Kurven: Gruppengesetz, Isogenien, Elliptische Kurven über endliche bzw. lokale Körper, Höhen, Mordell-Weil Theorem, Satz von Siegel

Proendliche Gruppen: Topologische Gruppen, proendliche Limiten, proendliche Gruppen, proendliche Sylowsätze, (stetige) Gruppenkohomologie, pro-p Gruppen, Satz von Golod–Shafarevich, absolute Galoisgruppen, Galoiskohomologie, lokale Klassenkörpertheorie.

Weiterführende Themen der Zahlentheorie: Verschiedene Themen u.a. Iwasawatheorie, étale Kohomologie, Galoisdarstellungen, Modulkurven und Modulformen, usw.

Qualifikationsziele und Kompetenzen:

Die Studierenden sind kompetent im Umgang mit tieferliegenden Konzepten der Zahlentheorie (z.B. Klassenkörper). Sie sind qualifiziert, das Erarbeitete in der Masterarbeit auf forschungsorientiertem Niveau anzuwenden.

Angebotszyklus:	zweijährlich						
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	Empfohlen sind Kenntniss	se aus c	ler	auf	Seit	te 4	17 be-
Modul:	schriebenen Lehrveranstalt	ung Alg	ebra	uno	d au	ıs d	er auf
	Seite 98 beschriebenen L	ehrveran	stalt	ung	Al	gebr	raische
	Zahlentheorie I						
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 6	0-minüti	tige Klausur oder 20-30-			der 20-30-	
prüfung oder kumulative Modulprü-	minütige mündliche Prüfun	g zur ge	wäh	lten	Leh	rver	anstaltung
fung) sowie Prüfungsform:							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Typ	SWS		Sem	este	r	CP
					3	4	
Algebraische Zahlentheorie II	Vorlesung + Übung	2 + 1			*	5	
oder Arithmetik Elliptischer Kurven	Vorlesung + Übung	2 + 1			*	5	
oder Proendliche Gruppen	Vorlesung + Übung	2 + 1		*		*	5
oder W. Themen der Zahlentheorie	Vorlesung + Übung	2 + 1		*		*	5

Modulbezeichnung: Topologie, MaM-TOP-gs	Wahlpflicht	CP: 13

Algebraische Topologie: Fundamentalgruppen, Homotopie, Simpliziale Komplexe, (Ko)Homologie, sowie z.B. Kategorien und Funktoren, deRham-Komologie, Cup-Produkt.

Riemannsche Flächen: Mannigfaltigkeiten und Überlagerungen, Differentialformen, harmonische Funktionen und Formen, Bilinearrelationen, Uniformisierung, Fuchssche Gruppen

Komplexe Geometrie: Komplexe Mannigfaltigkeiten, Garben, Komologie, Divisoren, Vektorbündel, Zusammenhänge, Chern-Klassen

Qualifikationsziele und Kompetenzen:

Die Studierende sind kompetent im Umgang mit tieferliegenden Konzepten der Topologie (z.B. Garben und Kohomologie). Sie sind qualifiziert, das Erarbeitete in einem Seminar und weiterführenden Vorlesungen auf forschungsorientiertem Niveau anzuwenden.

Angebotszyklus:	zweijährlich							
Dauer des Moduls:	2 Semester							
Voraussetzung für die Teilnahme am	Empfohlen sind Kenntnisse aus der auf Seite 47 beschriebenen					schriebenen		
Modul:	Lehrveranstaltung Algebra							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder	20-30-mi	nüti	ge 1	nün	dlicl	ne Prüfung	
prüfung oder kumulative Modulprü-	zur gewählten Lehrveransta	· · ·			nütig	ges I	Referat und	
fung) sowie Prüfungsform:	ggf. schriftliche Ausarbeitu	ng zum S	Semi	nar				
Voraussetzungen für die Vergabe der	bestandene Modulprüfung							
CP:								
Lehrveranstaltungen	Тур	SWS	S	$\mathbf{Sem}\mathbf{e}$	estei	r	CP	
			1	2	3	4		
Algebraische Topologie	Vorlesung + Übung	4 + 2	*		*		9	
oder Riemannsche Flächen	Vorlesung + Übung	Vorlesung + Übung	4 + 2	*		*		5
oder Komplexe Geometrie	Vorlesung + Übung	4 + 2	* * 5		5			
UND								
Seminar	Seminar	2		*		*	4	

Eine Spezialisierung in *Topologie* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 101 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93.

Modulbezeichnung: Topologie, MaM-TOP-k	Wahlpflicht	CP: 5

Algebraische Topologie II: z.B. charakteristische Klassen, Morse-Theorie, Spektralsequenzen, Homöomorphismen von Flächen, Knoten.

Riemannsche Flächen II: z.B. Garben und deren Kohomologie, spezielle Divisoren, Satz von Riemann-Roch, Weierstraßpunkte, Linearsysteme, Automorphismen, elliptische Funktionen, Theta-Funktionen, Flache Flächen, Modulräume

Komplexe Geometrie II: z.B. Hodge-Theorie, Kähler-Mannigfaltigkeiten, Riemann-Roch, spezielle Mannigfaltigkeiten wie z.B. Grassmannsche oder komplexe Tori, Modulräume

Qualifikationsziele und Kompetenzen:

Die Studierende sind kompetent im Umgang mit tieferliegenden Konzepten der Topologie (z.B. Schnitttheorie oder Modulräume). Sie sind qualifiziert, das Erarbeitete in der Masterarbeit auf forschungsorientiertem Niveau anzuwenden.

Angebotszyklus:	otszyklus: zweijährlich						
Dauer des Moduls:	auer des Moduls: 1 Semester						
Voraussetzung für die Teilnahme am	Empfohlen sind Kenntnisse	aus der	auf	Seit	e 47	bes	schriebenen
Modul:	Lehrveranstaltung Algebra	und aus	des	auf	Seit	e 10	00 beschrie-
	benen Moduls der <i>Topologi</i>	e					
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 60-minütige Klausur oder 2				der 20-30-		
prüfung oder kumulative Modulprü-	minütige mündliche Prüfun	g zur ge	wähl	lten	Leh	rver	anstaltung
fung) sowie Prüfungsform:							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	Semester		r	CP	
			1	2	3	4	
Algebraische Topologie II	Vorlesung + Übung	2 + 1	*		*	5	
oder Riemannsche Flächen II	Vorlesung + Übung	2 + 1		*		*	5
oder Komplexe Geometrie II	Vorlesung + Übung	2 + 1		*		*	5

Modulbezeichnung:	Geometrische Analysis, MaM-GA-gs	Wahlpflicht	CP: 13

Klassische Differentialgeometrie: Grundlegende Themen der Differentialgeometrie wie Kurven und Flächen, Mannigfaltigkeiten, Riemannsche Metriken, Gausskrümmung, Satz von Gauss-Bonnet

Analysis auf Mannigfaltigkeiten: Differenzierbare Mannigfaltigkeiten, Satz von Stokes, de Rham-Kohomologie, Laplaceoperator, Hodgetheorie, Wärmeleitungsgleichung, Konstruktion des Wärmeleitungskerns

 $Riemannsche\ Geometrie$: Riemannsche Mannigfaltigkeiten, Geodätische, Krümmung, Vergleichssätze, Riemannsche Submersionen.

Geometrische Evolutionsgleichungen: Krümmungsflüsse für Kurven, Ricci-Fluss, mittlerer Krümmungsfluss, harmonischer Wärmefluss, Singularitäten-Modelle, Konvergenz und Kompaktheitsatz, Maximumsprinzip.

Geometrische Variationsrechnung: Mannigfaltigkeiten, Wärmeleitungsgleichung, Minimalflächen, isoperimetrisches Problem, Ströme, curve shortening flow, Fluss entlang mittlerer Krümmung.

Qualifikationsziele und Kompetenzen:

Die Studierenden rlernen fortgeschrittener Arbeitstechniken und werden an aktuelle, forschungsorientierte Themen der Geometrischen Analysis herangeführt.

Angebotszyklus:	jährlich								
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-AN2, BaM-HA								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder	30-min	ütig	e m	ünd	liche	Prüfung zur		
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltur	ng; ca.	60-n	ninü	tiges	s Re	eferat und ggf.		
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zu	ım Sem	inar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS	,	Sem	este	r	CP		
			1	1 2 3 4		2 3 4		4	
Klassische Differentialgeometrie	Vorlesung + Übung	4+2	*	*	*	*	9		
oder Analysis auf Mannigfaltigkeiten	Vorlesung + Übung	4+2	*	*	*	*	9		
oder Riemannsche Geometrie	Vorlesung + Übung	4+2	*	*	*	*	9		
oder Geometrische Evolutionsgleichun-	Vorlesung + Übung	4+2 *	4+2 *	4+2 *	* * *		*	9	
gen									
oder Geometrische Variationsrechnung	Vorlesung + Übung	4 + 2	* * * *		9				
UND									
Seminar Geometrische Analysis	Seminar	2	*	*	*	*	4		

Eine Spezialisierung auf dem Gebiet *Geometrische Analysis* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 103 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93.

Modulbezeichnung: Geometrische Analysis, MaM-0	GA-k Wahlpflicht	CP: 5

Minimalflächen: Erste und zweite Variation, Satz von Bernstein, Krümmungsabschätzungen, Plateau Problem.

Geometrische Maßtheorie: Differentialformen, Ströme, Schnitte von normalen Strömen, rektifizierbare Ströme, Deformationssatz, Federer-Fleming-Kompaktheitssatz, Varifaltigkeiten.

Allgemeine Relativitätstheorie: Semi-Riemannsche Geometrie, Lorentz-Transformationen, Bewegung im Gravitationsfeld, Einsteinsche Feldgleichungen, Schwarzschild-Metrik, Schwarze Löcher, Penrose Ungleichung.

Nichtlineare Probleme der Geometrie: Yamabe Problem, optimaler Transport, harmonische Abbildungen, Relativitätstheorie, Flächen konstanter mittlerer Krümmung, Geometrische Masstheorie, Einstein-Mannigfaltigkeiten.

Nicht-glatte Differentialgeometrie: Metrische Maß-Räume, synthetische Definition von Ricci-Schranken, Räume vom Typ CD(K, N), Differentialgeometrie auf RCD-Räumen.

Qualifikationsziele und Kompetenzen:

Die Studierenden haben die Kenntnisse in Geometrischer Analysis vertieft.

Angebotszyklus:	jährlich/zweijährlich						
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	BaM-AN2, BaM-HA						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90)-minüti	ge :	Klat	ısur	ode	er 30-minütige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	ählten l	Lehi	vera	nsta	altu	ng
fung) sowie Prüfungsform:							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Typ SWS Semeste			este	r	CP	
			1	2	3	4	
Minimalflächen	Vorlesung + Übung	2+1	*	*	*	*	5
oder Geometrische Maßtheorie	Vorlesung + Übung	2+1	*	*	*	*	5
oder Allgemeine Relativitätstheorie	Vorlesung + Übung	2+1	* * * *				5
oder Nichtlineare Probleme der Geome-	Vorlesung + Übung	2+1	* * * *		*	5	
trie							
oder Nicht-glatte Differentialgeometrie	Vorlesung + Übung	2+1	*	*	*	*	5

Modulbezeichnung: Höhere Differentialgeometrie, MaM-HDG-gs | Gebiet: Geom. Analysis | Wahlpflicht | CP: 13 Inhalte der Lehrveranstaltungen:

Klassische Differentialgeometrie: Krümmung und Torsion von Kurven, Gaußsche und mittlere Krümmung von Flächen, Sätze von Fenchel und Fáry-Milnor, Satz von Gauß-Bonnet, kovariante Ableitung, Geodätische und Jacobi-Felder, Ausblicke auf weiterführende Themen.

Analysis auf Mannigfaltigkeiten: Differenzierbare Mannigfaltigkeiten, Satz von Stokes, de Rham-Kohomologie, Laplaceoperator, Hodgetheorie, Wärmeleitungsgleichung, Konstruktion des Wärmeleitungskerns

 $Riemannsche\ Geometrie$: Riemannsche Mannigfaltigkeiten, Geodätische, Krümmung, Vergleichssätze, Riemannsche Submersionen.

Darstellungen kompakter Liegruppen: Liegruppen, Liegligebren, Darstellungen von Liegruppen und Liegligebren, maximale Tori, Satz von Peter-Weyl, Weylgruppe, Weyls Charakterformel.

Konvex- und Integralgeometrie: Konvexe Mengen, Bewertungen, Hadwigers Theorem, Integralgeometrie des Euklidischen Raumes, translationsinvariante Bewertungen, Satz von McMullen.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen fortgeschrittener Arbeitstechniken und werden an aktuelle, forschungsorientierte Themen der Differentialgeometrie herangeführt.

Angebotszyklus:	jährlich						
Dauer des Moduls:	2 Semester						
Voraussetzung für die Teilnahme am	BaM-AN2, BaM-HA						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder	30-minütige mündliche	Prü	ifung	zur		
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltur	0,	ferat	und	ggf.		
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zu	ım Seminar					
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS		Sen	nester		CP
			1	2	3	4	
Klassische Differentialgeometrie	Vorlesung + Übung	4 + 2	*	*	*	*	9
oder Analysis auf Mannigfaltigkeiten	Vorlesung + Übung	4+2	*	*	*	*	9
oder Riemannsche Geometrie	Vorlesung + Übung	4 + 2	*	*	*	*	9
oder Darstellungen kompakter Liegrup-	Vorlesung + Übung	4+2	*	*	*	*	9
pen							
oder Konvex- und Integralgeometrie	Vorlesung + Übung	4+2	*	*	*	*	9
UND							
Seminar Differentialgeometrie	Seminar	2	*	*	*	*	4

Eine Spezialisierung in Höherer Differentialgeometrie mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 105 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93.

Modulbezeichnung: Höhere Differentialgeometrie, MaM-HDG-k | Gebiet: Geom. Analysis | Wahlpflicht | CP: 5 | Inhalte der Lehrveranstaltungen:

Liegruppen: Liegruppen und Liealgebren, Exponentialabbildung, Klassische Matrixgruppen, Cliffordalgebren und Spingruppen, Kompakte Liegruppen.

Symplektische Geometrie: Symplektische Mannigfaltigkeiten, Kählermannigfaltigkeiten, Hamiltonsche Systeme, Kontaktmannigfaltigeiten, Momentenabbildung.

Geometrische Ungleichungen: Brunn-Minkowski-Ungleichung, Steinersymmetrisierung, Isoperimetrische Ungleichung, Alexandrov-Fenchel-Ungleichung, Blaschke-Santaló-Ungleichung, Mahlervermutung.

 $Four ieranalysis\ und\ konvexe\ Mengen; \ Konvexe\ Mengen, \ Polytope, \ Distributionen, \ Four iertransformation, \ Busemann-Petty-Problem.$

Charakteristische Klassen: Vektorbündel, Grassmannsche Mannigfaltigkeiten, Stiefel-Whitney Klassen, Euler Klasse, Thom Isomorphismus, Chern Klassen, Pontrjagin Klassen.

Qualifikationsziele und Kompetenzen:

Die Studierenden haben die Kenntnisse in Geometrischer Analysis vertieft.

Angebotszyklus:	jährlich/zweijährlich						
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	BaM-AN2, BaM-HA						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90)-minütige Klausur ode	er 30)-mi:	nütige		
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	ählten Lehrveranstaltur	ng				
fung) sowie Prüfungsform:							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS		Sen	nester		CP
			1	2	3	4	
Liegruppen	Vorlesung + Übung	2+1	*	*	*	*	5
oder Symplektische Geometrie	Vorlesung + Übung	2+1	*	*	*	*	5
oder Geometrische Ungleichungen	Vorlesung + Übung						5
oder Fourieranalyis und konvexe Men-	n- Vorlesung $+$ Übung $2+1$ * *				*	*	5
gen							
oder Charakteristische Klassen	Vorlesung + Übung	2+1	*	*	*	*	5

Modulbezeichnung:	Fortgeschrittene	Funktionalanalysis, MaM-FFA-gs	Wahlpflicht	CP: 13
T 1 1, 1 T 1	. 1.			

Lineare Funktionalanalysis: Normierte Räume, Separabilität und Vollständigkeit, Satz von Baire, stetige lineare Operatoren, Hilberträume, Orthonormalsysteme, Adjungierte Operatoren, Satz von Hahn-Banach, Dualität und schwache Konvergenz;

dazu eine Auswahl folgender Themengebiete: Invertibilität und Spektrum, Spektraltheorie kompakter Operatoren, Radonmaße und der Darstellungssatz von Riesz, Satz von Stone-Weierstraß, Fouriertransformation, Schwartzraum und temperierte Distributionen, Sobolevräume

Qualifikationsziele und Kompetenzen:

Die Studierenden sind in der Lage, geeignete operatortheoretische Formulierungen für fortgeschrittene Problemstellungen aus der Analysis zu finden und abstrakte Begriffe und Resultate der fortgeschrittenen linearen Funktionalanalysis auf analytische Probleme anzuwenden.

Angebotszyklus (z.B. jährlich oder je-	jährlich/zweijährlich						
des Semester):							
Dauer des Moduls:	2 Semester						
Voraussetzung für die Teilnahme am	Module BaM-AN, BaM-LA						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 30-minütige mündliche Prüfung zur						
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltung; 60-minütiges Referat und schrift-						
fung) sowie Prüfungsform:	liche Ausarbeitung zum Seminar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	Semester			CP	
			1	2	3	4	
Lineare Funktionalanalysis	Vorlesung + Übung	4+2		*	*		9
UND							
Seminar zur fortgeschrittenen Funktio-	Seminar	2			*	*	4
nalanalysis							

Eine Spezialisierung in Fortgeschrittener Funktionalanalysis mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 107 beschriebenen Lehrveranstaltungen, siehe dazu Seite 93.

Modulbezeichnung: Fortgeschrittene Funktionalanalysis, MaM-FFA-k	Wahlpflicht	CP: 5
Inhalte der Lehrveranstaltungen:		

Ergänzungen zur linearen Funktionalanalysis: Auswahl folgender Themengebiete in Ergänzung zur Vorlesung 'Lineare Funktionalanalysis': Invertibilität und Spektrum, Spektraltheorie kompakter Operatoren, Radonmaße und der Darstellungssatz von Riesz, Satz von Stone-Weierstraß, Fouriertransformation, Schwartzraum und temperierte Distributionen, Sobolevräume

Abbildungsgrad und Fixpunktsätze für nichtlineare Operatoren: Abbildungsgrad von Brouwer, Leray-Schauder-Abbildungsgrad, Fixpunktsätze, Anwendungen auf Randwertprobleme für Differentialgleichungen.

Theorie kritischer Punkte für Variationsprobleme: Differenzierbarkeitseigenschaften nichtlinearer Operatoren, Gradientenfluss und Deformation von Subniveaumengen, Existenzsätze für kritische Punkte und Anwendungen.

Lineare und nichtlineare einparametrige Halbgruppen: Banachraumwertige Integrale, dissipative Operatoren, stark stetige Halbgruppen, lineare und nichtlineare Evolutionsgleichungen.

Qualifikationsziele und Kompetenzen:

Die Studierenden sind in der Lage, Methoden der fortgeschrittenen linearen und nichtlinearen Funktionalanalysis vergleichend zu bewerten und exemplarisch anzuwenden. Ferner haben Sie gelernt, Besonderheiten fortgeschrittener linearer und nichtlinearer Probleme sowohl im operatortheoretischen Rahmen als auch im Rahmen von Anwendungen (z.B. auf Differentialgleichungen) zu erkennen.

jährlich/zweijährlich							
1 Semester							
Module BaM-AN, BaM-LA, Kenntnisse aus der Vorlesung							
Lineare Funktionalanalysis sind dringend empfohlen							
Deutsch oder Englisch							
_							
Modulabschlussprüfung: 90-minütige Klausur oder 30-minütige							
mündliche Prüfung zur gewählten Lehrveranstaltung							
bestandene Modulprüfung							
Тур	SWS	Semester CP			CP		
		1	2	3	4		
Vorlesung + Übung	2 + 1			*	*	5	
Vorlesung + Übung	2 + 1			*	*	5	
Vorlesung + Übung	2+1			*	*	5	
Vorlesung + Übung	2+1			*	*	5	
	Module BaM-AN, BaM-LA, Lineare Funktionalanalysis s Deutsch oder Englisch Modulabschlussprüfung: 90-1 mündliche Prüfung zur gewä bestandene Modulprüfung Typ Vorlesung + Übung Vorlesung + Übung Vorlesung + Übung	1 Semester Module BaM-AN, BaM-LA, Kenntn Lineare Funktionalanalysis sind drin Deutsch oder Englisch Modulabschlussprüfung: 90-minütige mündliche Prüfung zur gewählten Le bestandene Modulprüfung Typ SWS Vorlesung + Übung 2+1 Vorlesung + Übung 2+1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Modulbezeichnung: Fortgeschrittene Partielle Differentialgleichungen, MaM-FPD-gs Wahlpflicht CP: 13

Inhalte der *Lehrveranstaltungen*:

Lineare Partielle Differentialgleichungen: Darstellungsformeln für Lösungen grundlegender partieller Differentialgleichungen, Greenfunktionen, Sobolevräume, elliptische und parabolische Gleichungen zweiter Ordnung, Existenz und Regularität schwacher Lösungen, Maximumsprinzipien

Qualifikationsziele und Kompetenzen:

Die Studierenden können verschiedene Typen partieller Differentialgleichungen unterscheiden und methodisch einordnen. Sie haben ein vertieftes Verständnis der Bedeutung verschiedener Lösungsbegriffe in Theorie und Anwendung erworben und können sowohl grundlegende als auch fortgeschrittene analytische Methoden auf lineare partielle Differentialgleichungen anwenden.

Angebotszyklus (z.B. jährlich oder je-	jährlich/zweijährlich							
des Semester):								
Dauer des Moduls:	2 Semester							
Voraussetzung für die Teilnahme am	Module BaM-AN, BaM-LA							
Modul:								
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 30-minütige mündliche Prüfung zur							
prüfung oder kumulative Modulprü-	Lehrveranstaltung Lineare partielle Differentialgleichungen; 60-							
fung) sowie Prüfungsform:	minütiges Referat und schriftliche Ausarbeitung zum Seminar							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung							
CP:								
Lehrveranstaltungen	Тур	SWS	5	Sem	este	ſ	CP	
			1	2	3	4		
Lineare partielle Differentialgleichun-	Vorlesung + Übung	4+2		*	*		9	
gen								
UND								
Seminar zu partiellen Differentialglei-	Seminar	2			*	*	4	
chungen								

Eine Spezialisierung in *Partielle Differentialgleichungen* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 109 beschriebenen Lehrveranstaltungen, siehe dazu Seite 93.

Modulbezeichnung: Fortgeschrittene Partielle Differentialgleichungen, MaM-FPD-k Wahlpflicht	CP: 5
Inhalte der Lehrveranstaltungen:	

Nichtlineare partielle Differentialgleichungen erster Ordnung: Vollständige Integrale, Charakteristiken, Hamilton-Jacobi-Gleichungen, hyperbolische Erhaltungsgleichungen.

Nichtlineare Partielle Differentialgleichungen zweiter Ordnung: nichtlineare Randwertprobleme, variationelle und topologische Methoden, Regularität schwacher Lösungen.

Qualifikationsziele und Kompetenzen:

Die Studierenden können exemplarische Lösungsmethoden auf fortgeschrittene Problemstellungen im Zusammenhang mit nichtlinearen partiellen Differentialgleichungen anwenden. Ferner haben Sie fortgeschrittene Kenntnisse über nichtlineare Phänomene und deren analytische Herleitung im Rahmen partieller Differentialgleichungen erworben.

Angebotszyklus (z.B. jährlich oder je-	jährlich/zweijährlich							
des Semester):								
Dauer des Moduls:	1 Semester	1 Semester						
Voraussetzung für die Teilnahme am	Module BaM-AN, BaM-LA, Kenntnisse au	ıs der V	orles	sung	S			
Modul:	Lineare Partielle DGLen' sind dringend en	npfohler	1					
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-minütige Klausur oder 30-minütige							
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gewählten Lehrveranstaltung							
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	bestandene Modulprüfung							
CP:								
Lehrveranstaltungen	Typ	SWS	5	Sem	este:	ſ	CP	
			1	2	3	4		
Nichtlineare partielle Differentialglei-	Vorlesung + Übung	2+1			*	*	5	
chungen zweiter Ordnung								
oder Nichtlineare partielle Differential-	Vorlesung + Übung	2+1			*	*	5	
gleichungen erster Ordnung								

Modulbezeichnung: Dynamische Systeme, MaM-DynSyst-gs	Wahlpflicht	CP: 13

Dynamische Systeme: Invariante Mengen, Konjugation, wandernde und nicht-wandernde Punkte, ω -Grenzmengen, Attraktoren, absorbierende und attrahierende Mengen, Stabilität, Lyapunov-Funktionen, Morse-Zerlegung, invariante Maße, Linearisierung, Multiplikativer Ergodensatz, Lyapunov-Exponenten

Qualifikationsziele und Kompetenzen:

Die Studierenden erlernen fortgeschrittene Arbeitstechniken und werden an aktuelle, forschungsorientierte Themen der Theorie der Dynamischen Systeme herangeführt.

Angebotszyklus:	jährlich bis zweijährlich								
Dauer des Moduls:	zwei Semester								
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-AN2, BaM	І-НА , В	aM-	LA:	1, B	aM-	LA2		
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder	30-min	nütige mündliche Prüfung zur						
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltur	ng; ca. (a. 60-minütiges Referat und ggf.						
fung) sowie Prüfungsform:	schriftliche Ausarbeitung z	um Sem	inar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS	,	Sem	este	r	CP		
			1	2	3	4			
Dynamische Systeme	Vorlesung + Übung	4+2	*	* * * *			9		
UND									
Seminar zu Dynamischen Systemen	Seminar	2	*	*	*	*	4		

Eine Spezialisierung auf dem Gebiet *Dynamische Systeme* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 111 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93 (5 CP) oder zusammen mit dem hier beschriebenen Modul als kombiniertes Modul MaM-GA-gks (18 CP) gewählt werden.

Modulbezeichnung: Dynamische Systeme, MaM-DynSyst-k	Wahlpflicht	CP: 5

Zufällige dynamische Systeme: Erzeugung, Kozykel, Schiefprodukt-Fluss über messbarem System, zufällige Mengen, zufällige Attraktoren, invariante Maße, Zusammenhang Schiefprodukt und Markov-Halbgruppe

 $Nichtautonome\ dynamische\ Systeme$: Schiefprodukt-Fluss, Pullback- und Vorwärtskonvergenz, Attraktoren

Bifurkationstheorie: Konzepte, lokale Bifurkationen: Sattel-Knoten, transkritische, Pitchfork, Hopf, Periodenverdoppelung; globale Bifurkationen, homokline und heterokline Orbits.

Ergodentheorie: Ergodensätze, maßtheoretische und topologische Entropie, Konjugiertheit, Invarianten

Lyapunov-Exponenten und Entropie: invariante Maße für Diffeomorphismen, Lyapunov-Exponenten, Entropie, SRB-Maße

Lineare und nichtlineare einparametrige Halbgruppen: siehe MaM-FFA-k

Qualifikationsziele und Kompetenzen:

Die Studierenden vertiefen die Kenntnisse in Dynamischen Systemen und sind in der Lage, verschiedene Klassen dynamischer Systeme zu identifizieren und zu analysieren.

Angebotszyklus:	jährlich bis zweijährlich						
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	BaM-AN1, BaM-AN2, BaM	І-НА , В	aM-	-LA	$\overline{1, B}$	aM-	LA2
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90)-minüti	ge :	Klaı	ısur	ode	er 30-minütige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	ählten l	Ĺehr	vera	anst	altu	ng
fung) sowie Prüfungsform:							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	,	Sem	este	r	CP
			1	2	3	4	
Zufällige dynamische Systeme	Vorlesung + Übung	2+1	*	*	*	*	5
oder Nicht-autonome dynamische Sys-	Vorlesung + Übung	2+1	*	*	*	*	5
teme							
oder Bifurkationstheorie	Vorlesung + Übung	2+1	*	*	*	*	5
oder Ergodentheorie	Vorlesung + Übung	2+1	*	*	*	*	5
oder Lyapunov-Exponenten und Entro-	Vorlesung + Übung	2+1	*	*	*	*	5
pie							
oder Lineare und nichtlineare einpara-	Vorlesung + Übung	2+1	*	*	*	*	5
metrige Halbgruppen							

Modulbezeichnung: Fortgeschrittene Numerik, MaM-FN-gs	Wahlpflicht	CP: 13

Numerik von Differentialgleichungen: Numerische Lösungsverfahren für gewöhnliche Differentialgleichungen (z.B. Ein- und Mehrschrittverfahren, Runge-Kutta-Methoden, Steifigkeit und Stabilität, linear implizite Methoden, Randwertprobleme). Ausblick auf numerische Lösungsverfahren für partielle Differentialgleichungen.

Optimierung und inverse Probleme: Numerische Lösungsverfahren zur Behandlung unrestringierter Optimierungs- und Identifikationsprobleme (z.B. Optimalitätsbedingungen, Abstiegsverfahren, Newton- und Quasi-Newton-Verfahren, globalisierte Verfahren, Ausgleichsprobleme). Ausblick auf die restringierte Optimierung (z.B. Lineare Optimierung, Optimalitätsbedingungen, numerische Verfahren für nichtlineare restringierte Probleme) oder globale Optimierungsprobleme.

Numerische Dynamik: Durch gewöhnliche Differentialgleichungen erzeugte dynamische Systeme, Theorie zeitkontinuierlicher Systeme und deren Verhalten, durch numerische Verfahren erzeugte zeitdiskrete Systeme, Wirkung von Zeitdiskretisierung durch Einschrittverfahren auf Attraktoren, Sattelpunkte und Hamiltonsche Systeme.

Seminar zur fortgeschrittenen Numerik: verschiedene fortgeschrittene Themen aus der Numerik

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen numerische Konzepte kennen. Sie lernen, numerische Algorithmen zu entwickeln, mathematisch zu analysieren, computergestützt zu implementieren und auf konkrete Probleme anzuwenden.

Angebotszyklus (z.B. jährlich oder je-	jährlich						
des Semester):							
Dauer des Moduls:	2 Semester						
Voraussetzung für die Teilnahme am	BaM-NM						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 3	30-minüt	tige	müı	ndlio	che I	Prüfung zur
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltung; 60-minütiges Referat und schrift-						
fung) sowie Prüfungsform:	liche Ausarbeitung zum Seminar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Typ	SWS			este	r	CP
			1	2	3	4	
Numerik von Differentialgleichungen	Vorlesung + Übung	4+2	*	*	*	*	9
oder Optimierung und inverse Proble-	Vorlesung + Übung	4 + 2	*	*	*	*	9
me							
oder Numerische Dynamik	Vorlesung + Übung	4+2	*	*	*	*	9
UND							
Seminar Fortgeschrittene Numerik	Seminar	2	*	*	*	*	4

Eine Spezialisierung in Fortgeschrittener Numerik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 113 angegebenen Lehrveranstaltungen, siehe dazu Seite 93.

Modulbezeichnung:	Fortgeschrittene Numerik, MaM-FN-k	Wahlpflicht	CP: 5

Numerik partieller Differentialgleichungen: Numerische Lösung partieller Differentialgleichungen (z.B. Finite-Differenzen-, Finite-Elemente- und Finite-Volumen-Verfahren, Linienmethoden).

Fortgeschrittene Optimierung und inverse Probleme: Fortgeschrittene Themen der Optimierung und der inversen Probleme (z.B. restringierte Optimierung, Regularisierung schlecht-gestellter inverser Probleme oder inverse Probleme partieller Differentialgleichungen)

Stochastische Numerik: Herleitung konsistenter Methoden höherer Ordnung für stochastische Differentialgleichungen mit Hilfe der stochastischen Taylor-Entwicklung sowie deren Implementierung.

Quadraturverfahren: Eindimensionale Quadraturverfahren: Konstruktion, interpolatorische Verfahren, zusammengesetzte Verfahren; Mehrdimensionale Quadraturverfahren: Konstruktion, interpolatorische Verfahren, Monte-Carlo- und Quasi-Monte-Carlo- Verfahren, Dünngitterverfahren; Quadratur-Algorithmen: Fehlerschätzung, adaptive Verfeinerung;

Monte Carlo-Methoden: Erzeugung von Zufallszahlen im Computer, Kongruenzgeneratoren, Quasi-Zufallszahlen, allgemeine Verteilungen, Inversionsmethode, Box-Muller-Methode, Acceptance-Rejection-Methode, Erzeugung von Zufallspfaden, Markovketten, Numerische Integration, Varianzreduktion.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen numerische Konzepte kennen. Sie lernen, numerische Algorithmen zu entwickeln, mathematisch zu analysieren, computergestützt zu implementieren und auf konkrete Probleme anzuwenden.

Angebotszyklus (z.B. jährlich oder je-	jährlich						
des Semester):							
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	BaM-NM						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 60	-minütig	ge K	laus	ur o	der	30-minütige
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gewählten Lehrveranstaltung						
fung) sowie Prüfungsform:							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung	Modulprüfung					
CP:							
Lehrveranstaltungen	Typ	SWS	,	Sem	este	r	CP
			1	2	3	4	
Numerik partieller Differentialgl.	Vorlesung + Übung	2+1	*	*	*	*	5
oder Fortgeschrittene Optimierung und	$Vorlesung + \ddot{U}bung$	2+1	*	*	*	*	5
inverse Probleme							
oder Stochastische Numerik	Vorlesung + Übung	2+1	*	*	*	*	5
oder Quadraturverfahren	Vorlesung + Übung	2+1	*	*	*	*	5
oder Monte-Carlo-Verfahren	Vorlesung + Übung	2+1	*	*	*	*	5

Modulbezeichnung: Fortg. Numer. Finanzmath., MaM-FNFM-gs Wahlpflicht CP: 13

Inhalte der Lehrveranstaltungen:

Computational Finance: Finanzderivate, Marktmodelle, grundlegende Bewertungsverfahren, geschlossene Bewertungsformeln, Baumverfahren, Simulationsverfahren, PDE-basierte Verfahren.

Seminar zu Fortgeschrittene Numerische Finanzmathematik: verschiedene Themen aus der fortgeschrittenen Numerischen Finanzmathematik

Qualifikationsziele und Kompetenzen:

Die Studierenden vertiefen ihr Wissen in der Thematik von numerischen Verfahren zur Lösung finanzmathematischer Probleme. Sie sind nicht nur in der Lage diese im Hinblick auf Aufwand, Genauigkeit und Konvergenz zu analysieren, sondern auch fähig die Verfahren zu verbessern. Im Vordergrund steht weiter die Anwendung und Erweiterung der Verfahren mittels effizienter Implementierung der gelernten Algorithmen in einer höheren Programmiersprache.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich								
des Semester):									
Dauer des Moduls:	2 Semester								
Voraussetzung für die Teilnahme am	BaM-NM								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	- 90-minütige Klausur oder 30-minütige mündliche Prüfung zur								
prüfung oder kumulative Modulprü-	- Lehrveranstaltung Computational Finance; 45-minütiges Refe-								
fung) sowie Prüfungsform:	rat und schriftliche Ausarbe	eitung z	um	Sem	inaı	ſ			
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS	5	Sem	este:	r	CP		
			1	2	3	4			
Computational Finance	Vorlesung + Übung	4+2		*			9		
UND									
Seminar Fortg. Num. Finanzmath.	Seminar	2			*		4		

Eine Spezialisierung in Fortgeschrittener Numerischer Finanzmathematik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 115 angegebenen Lehrveranstaltungen, siehe dazu Seite 93.

Modulbezeichnung: Fortg. Numer. Finanzmath., MaM-FNFM-k	Wahlpflicht	CP: 5

Inverse Probleme in der Finanzmathematik: Parameterschätzung bei stochastischen Modellen, Maximum-Likelihood-Verfahren, Parameter-Kalibrierung, Optimierung.

Stochastische Numerik: Herleitung konsistenter Methoden höherer Ordnung für stochastische Differentialgleichungen mit Hilfe der stochastischen Taylor-Entwicklung sowie deren Implementierung.

Monte Carlo-Methoden: Erzeugung von Zufallszahlen im Computer, Kongruenzgeneratoren, Quasi-Zufallszahlen, allgemeine Verteilungen, Inversionsmethode, Box-Muller-Methode, Acceptance-Rejection-Methode, Erzeugung von Zufallspfaden, Markovketten, Numerische Integration, Varianzreduktion.

Qualifikationsziele und Kompetenzen:

Die Studierenden erhalten forschungsorientiertes Wissen in der Thematik von numerischen Verfahren zur Lösung finanzmathematischer Probleme. Sie sind nicht nur in der Lage diese im Hinblick auf Aufwand, Genauigkeit und Konvergenz zu analysieren, sondern auch fähig komplexe Verfahren eigenständig zu verbessern. Im Vordergrund steht weiter die Anwendung und Erweiterung komplizierter Verfahren aus der aktuellen Forschung mittels effizienter Implementierung der gelernten Algorithmen in einer höheren Programmiersprache.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich							
des Semester):	2 "Officiality							
/	1.0							
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	BaM-NM							
Modul:								
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	- Modulabschlussprüfung: 60-minütige Klausur oder 30-minütige							
prüfung oder kumulative Modulprü-	- mündliche Prüfung zur gewählten Lehrveranstaltung							
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	bestandene Modulprüfung							
CP:								
Lehrveranstaltungen	Тур	SWS	5	Seme	este	r	CP	
			1	2	3	4		
Inverse Probleme der Finanzmath.	Vorlesung + Übung	2+1		*			5	
oder Stochastische Numerik	Vorlesung + Übung	2+1			*		5	
oder Monte-Carlo-Verfahren	Vorlesung + Übung	2+1			*		5	

Symbolisches Rechnen und Gröbnerbasen: Polynomiale Gleichungssysteme, kombinatorische kommutative Algebra, Gröbnerbasen und Polytope, algorithmische Idealtheorie, endliche Varietäten, reelle Nullstellen, symbolische Methoden zur ganzzahligen Optimierung

Diskrete und konvexe Geometrie: Konvexität, Modelle der diskreten und konvexen Geometrie (Polytope, Polyeder, Punktkonfigurationen, Gitter, Gitterpunkte in Polytopen), algorithmische Fragestellungen

(Lineare und kombinatorische) Optimierung: Geometrische Grundlagen der Optimierung, lineare Optimierung, Dualitätstheorie, Optimierungsalgorithmen, kombinatorische Aufgabenstellungen, ganzzahlige Probleme, Graphenprobleme, Optimierungsmodelle der Spieltheorie

Semidefinite Optimierung und positive Polynome: Konische Optimierungsprobleme, semidefinite Optimierungsprobleme, SDP-basierte Approximationsalgorithmen, Innere-Punkte-Verfahren, SDP und Summen von Quadraten, polynomiale Optimierungsprobleme, SDP und reelle algebraische Geometrie, Positivstellensätze, Relaxationen von Lasserre und Parrilo, Θ -Körper

Tropische Geometrie: Der tropische Semiring $(R, \max, +)$, tropische Hyperebenen, geometrische Kombinatorik, kombinatorische tropische Geometrie, tropische Varietäten, tropische Basen, Anwendungen der tropischen Geometrie

Qualifikationsziele und Kompetenzen:

Die Studierenden haben fortgeschrittene Arbeitstechniken der diskreten bzw. algorithmischen Mathematik erlernt.

Angebotszyklus:	jährlich							
Dauer des Moduls:	2 Semester							
Voraussetzung für die Teilnahme am	BaM-DM; Nützlich sind Kenntnisse aus BaM-DAM							
Modul:								
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 30-minütige							
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltung; ca. 60-mir	nütiges	Refe	erat	und	ggf		
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zum Seminar							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung							
CP:								
Lehrveranstaltungen	Typ	SWS			este		CP	
			1	2	3	4		
Symbolisches Rechnen und Gröbnerba-	Vorlesung + Übung	4+2	*	*			9	
sen	25							
oder Diskrete und konvexe Geometrie	Vorlesung + Übung	4+2	*	*			9	
oder (Lineare und kombinatorische)	Vorlesung + Übung	4+2	*	*			9	
Optimierung								
oder Semidefinite Optimierung und po-	Vorlesung + Übung	4+2	*	*			9	
sitive Polynome								
oder Tropische Geometrie	Vorlesung + Übung	4+2	*	*			9	
UND								
Seminar	Seminar	2		*	*		4	

Eine Spezialisierung in Advanced Discrete and Computational Mathematics mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 117 beschriebenen Lehrveranstaltungen, siehe dazu Seite 93.

Semidefinite Optimierung: Konische Optimierungsprobleme, semidefinite Optimierungsprobleme, SDP-basierte Approximationsalgorithmen, Innere-Punkte-Verfahren, SDP und Summen von Quadraten, SDP-basierte Relaxationen

Polynomiale und semialgebraische Optimierung: Momentenmethode, Positivstellensätze, positive Polynome und Optimierung, Dualität, Struktur von Polynomkegeln, LP-Relaxationen, semidefinite Relaxationen, geometrische Programmierung

Polynome: Nullstellen von Polynomen, Geometrie und Kombinatorik von Polynomen, stabile Polynome, Geometrie und Kombinatorik von Amöben, algorithmische Methoden

Spektraeder: Geometrie und Kombinatorik von Spektraedern, Polytope und Spektraeder, Geometrie semidefiniter Programme, Dualität, Projektionen von Spektraedern

Diskrete und konvexe Geometrie 2: Fortgeschrittene und aktuelle Themen zur diskreten und konvexen Geometrie und ihren Anwendungen

 $Mathematische\ Spieltheorie:$ strategische Spiele, Nash-Gleichgewichte, Bimatrixspiele, n-Personen-Spiele, extensive Spiele, kooperative Modelle, algorithmische Aspekte

Qualifikationsziele und Kompetenzen:

Die Studierenden sind an aktuelle, forschungsorientierte Themen der diskreten bzw. algorithmischen Mathematik herangeführt worden.

Angebotszyklus:	jährlich								
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am	BaM-DM; Nützlich sind Kenntnisse aus BaM-DAM								
Modul:									
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch								
Studiennachweise (Teilnahme- / Leis-	_								
tungsnachweise):									
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-minütige Klausur oder 30-minütige								
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gewählten Lehrveranstaltung								
fung) sowie Prüfungsform:									
Voraussetzungen für die Vergabe der	bestandene Modulprüfung								
CP:									
Lehrveranstaltungen	Тур	SWS	,	Sem	este	CP			
			1	2	3	4			
Semidefinite Optimierung	Vorlesung + Übung	2+1	*	*	*	*	5		
oder Polynomiale und semialgebraische	Vorlesung + Übung	2+1	*	*	*	*	5		
Optimierung									
oder Polynome	Vorlesung + Übung	2+1	*	*	*	*	5		
oder Spektraeder	Vorlesung + Übung	2+1	*	*	*	*	5		
oder Diskrete und konvexe Geometrie 2	Vorlesung + Übung	2+1	*	*	*	*	5		
oder Mathematische Spieltheorie	Vorlesung + Übung	2+1	*	*	*	*	5		

Modulbezeichnung: Diskrete und algebraische	Wahlpflicht	CP: 13
Strukturen und Algorithmen, MaM-DASA-gs		

Gitterpolytope: Gitter, Polytope, Gitterpunkterzeugendenfunktionen Endlichkeitsresultate, Gorenstein Polytope, unimodulare Triangulierungen

Geometrie der Zahlen: Gitter, Konvexität, Minkowskis Sätze, Erweiterungen und Anwendungen, LLL-Algorithmus, SVP/CVP und Anwendungen

Ganzzahlige Optimierung: Lineare Optimierung und Dualität, IP-Modelle, Schnittebenenverfahren, totale Unimodularität, polyedrische Kombinatorik

Kombinatorik: fundamentale Koeffizienten, Graphentheorie, Hypergraphen und Mengensysteme, erzeugende Funktionen, enumerative Kombinatorik, Polynommethode

Torische Varietäten: Kegel und affine torische Varietäten, Fächer und normale torische Varietäten, Divisoren, Linienbündel, Kohomologie

 $Kombinatorische\ kommutative\ Algebra$: Monomideale, (zelluläre) Auflösungen, Alexanderdualität, Gitterideale, Gröbnerbasen & Triangulierungen

Tropische Geometrie: wie auf Seite 116 beschrieben

Qualifikationsziele und Kompetenzen:

Die Studierenden erlernen fortgeschrittene Arbeitstechniken und erwerben Übersetzungskompetenz zwischen diskreten und algebraischen Strukturen. Sie werden an aktuelle, forschungsorientierte Themen herangeführt.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich							
des Semester):								
Dauer des Moduls:	2 Semester							
Voraussetzung für die Teilnahme am	Empfohlen sind Grundkenntnisse der algebraischen Geometrie							
Modul:	oder der kommutativen Algebra							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisc	h						
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur			-	-		_	
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltung, 60-minütiges Referat und ggf.						Referat und ggf.	
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zum Seminar							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung							
CP								
Lehrveranstaltungen	Typ	SWS	,		este		CP	
			1	2	3	4		
Gitterpolytope	Vorlesung + Übung	4+2	*	*			9	
oder Geometrie der Zahlen	Vorlesung + Übung	4 + 2	*	*			9	
oder Ganzzahlige Optimierung	Vorlesung + Übung	4 + 2	*	*			9	
oder Kombinatorik	Vorlesung + Übung	4 + 2	*	*			9	
oder Torische Varietäten	Vorlesung + Übung	4 + 2	*	*			9	
oder Komb. komm. Algebra	Vorlesung + Übung	4 + 2	*	*			9	
oder Tropische Geometrie	Vorlesung + Übung	4 + 2	* * 9					
UND		·						
Seminar	Seminar	2			*	*	4	

Eine Spezialisierung in *Diskrete und Algebraische Strukturen* mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 119 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 46.

Modulbezeichnung: Diskrete und algebraische	Wahlpflicht	CP: 5
Strukturen und Algorithmen, MaM-DASA-k		

Polynomielle Gleichungssysteme: Symbolische und numerische Methoden zum Lösen polynomieller Gleichungssysteme

 $\label{lineare} \textit{Lineare Algebraische Gruppen II Parabolische, Flaggenvariet \"{a}ten, Strukturtheorie linearer algebraischer Gruppen II Parabolischer Gruppen II Parabolis$

Wurzelsysteme: Spiegelungen und Wurzelsysteme, reduziert und irreduzibel, Kammern und Basen, Dynkindiagramme, Klassifikation

Affine Halbgruppen: Erzeuger und Syzygien von Gitteridealen, lokale Kohomologie von Halbgruppenringen

Triangulierungen: Triangulierungen von Punktkonfigurationen, Sekundärpolytop, Cayley-Trick

Weiterführende Themen der kombinatorischen Algebra: Verschiedene Themen wie Stanley-Reisner-Ringe, topologische Kombinatorik, Bewertungen und Polytopalgebra

Qualifikationsziele und Kompetenzen:

Die Studierenden erlernen fortgeschrittene Arbeitstechniken und erwerben Übersetzungskompetenz zwischen diskreten und algebraischen Strukturen. Sie werden an aktuelle, forschungsorientierte Themen herangeführt.

Angebotszyklus (z.B. jährlich oder je-	zweijährlich							
des Semester):								
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	Empfohlen sind Grundkenntnisse der algebraischen Geometrie							
Modul:	oder der kommutativen Algebra							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisc	h						
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-minütige Klausur oder 30-							
prüfung oder kumulative Modulprü-	minütige mündliche I	Prüfung	zur	gew	ählt	en I	Lehrveranstaltung	
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	bestandene Modulpri	ifung						
CP								
Lehrveranstaltungen	Тур	SWS	Semester			r	CP	
			1	2	3	4		
Polynomielle Gleichungssysteme	Vorlesung + Übung	2+1		*	*		5	
oder Algebraische Gruppen	Vorlesung + Übung	2+1		*	*		5	
oder Wurzelsysteme	Vorlesung + Übung	2 + 1		*	*		5	
oder Affine Halbgruppen	Vorlesung + Übung	2 + 1	* * 5					
oder Triangulierungen	Vorlesung + Übung	2 + 1		*	*		5	
oder W. Themen d. komb. Alg.	Vorlesung + Übung	2 + 1		*	*		5	

Zusätzlich zu der auf Seite 118 angegebenen Möglichkeit kann man eine Spezialisierung in Diskrete und Algebraische Strukturen mit 18 CP auch durch Hinzunahme eines Seminars aus diesem Gebiet (siehe Seite 118) und einer der folgenden Lehrveranstaltungen erreichen: Algebraische Geometrie I (siehe Seite 94), Lineare Algebraische Gruppen I (siehe Seite 96), Torische Varietäten (siehe Seite 118), Kombinatorische kommutative Algebra (siehe Seite 118), Darstellungen kompakter Liegruppen (siehe Seite 102).

Modulbezeichnung: Probabilistische und Ex-	Wahlpflicht	CP: 13
tremale Kombinatorik, MaM-PEK-gs		

Extremale Kombinatorik: Extremale Graphen- und Hypergraphentheorie, Regularitätsmethode, Quasizufälligkeit, graph limits, Expandergraphen, dependent random choice, Ramseysätze, property testing, algorithmische Aspekte

 $\label{lem:probabilistische} Probabilistische \ Methoden \ in \ der \ Diskreten \ Mathematik, \ algorithmische \ Aspekte$

Mathematik von Phasenübergängen: Boltzmann-Verteilung, Entropie, klassische und mean-field-Modelle, Belief Propagation, rigorose Analyse der freien Energie, Anwendungen in der diskreten Mathematik

Qualifikationsziele und Kompetenzen:

Die Studierenden erlangen ein tiefes Verständnis in der Extremalen und Probabilistischen Kombinatorik und sind für deren Anwendungsmöglichkeiten sensibilisiert. Ferner können sie sich selbstständig mit den aktuellen Fragestellungen befassen.

A 1 / 11 / D :::1 1: 1 1 :	1 1. 1									
Angebotszyklus (z.B. jährlich oder je-	zweijährlich									
des Semester):										
Dauer des Moduls:	2 Semester									
Voraussetzung für die Teilnahme am	BaM-DM; Nützlich sind Kenntnisse aus BaM-DAM sowie Sto-									
Modul:	chastische Konzentra	tionsun	$glei\epsilon$	chun	gen	(sie	he Seite 123)			
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisc	h								
Studiennachweise (Teilnahme- / Leis-	_									
tungsnachweise):										
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 30-minütige mündliche Prüfung zur									
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltung, 60-minütiges Referat und ggf.									
fung) sowie Prüfungsform:	schriftliche Ausarbeit	e Ausarbeitung zum Seminar								
Voraussetzungen für die Vergabe der	bestandene Modulpri	ifung								
CP										
Lehrveranstaltungen	Тур	SWS	Semester			Semester			r	CP
			1	2	3	4				
Extremale Kombinatorik	Vorlesung + Übung	4+2	*	*			9			
oder Probabilistische Kombinatorik	Vorlesung + Übung	4+2	*	*			9			
oder Mathematik von Phasenübergän-	Vorlesung + Übung	4+2	*	*			9			
gen										
UND										
Seminar	Seminar	2			*	*	4			

Eine Spezialisierung in <u>Probabilistischer und Extremaler Kombinatorik</u> mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 121 beschriebenen Lehrveranstaltungen oder auch durch Hinzunahme einer der folgenden Lehrveranstaltungen: <u>Stochastische Analyse von Algorithmen</u> (2+1 SWS), <u>Stochastische Konzentrationsungleichungen</u> (2+1 SWS).

Modulbezeichnung: Probabilistische und Ex-	Wahlpflicht	CP: 5
tremale Kombinatorik, MaM-PEK-k		

Additive Kombinatorik: Sumsets, diskrete Fourieranalysis, Methoden aus der Graphentheorie, Ramseytheorie, Polynommethode, Szemerédi's Theorem, Green-Tao Theorem

Analytische Kombinatorik: Grundlagen der enumerativen Kombinatorik, symbolische Methoden, erzeugende Funktionen, Singularitätsanalyse, Grenzwertsätze, Anwendungen auf Fragestellungen der diskreten Mathematik

Markovketten und zufälliges Erzeugen: Konvergenzsätze, mixing time, Metropolisprozess und Glauber dynamics, couplings, Anwendungen auf Modelle der statistischen Physik

 $\label{thm:component} \textit{Zuf\"{a}llige Graphen} : \textit{Erd\~{o}s-Ren\'{y}i und verwandte Modelle, giant component, Schwellenwertfunktionen, zero-one-laws}$

Qualifikationsziele und Kompetenzen:

Die Studierenden erlangen ein Verständnis für die aktuelle Forschung in der Extremalen und Probabilistischen Kombinatorik und sind für deren Anwendungsmöglichkeiten sensibilisiert. Sie sind qualifiziert, das Erarbeitete in der Masterarbeit auf forschungsorientiertem Niveau anzuwenden.

	0							
Angebotszyklus (z.B. jährlich oder je-	zweijährlich							
des Semester):								
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	BaM-DM; Nützlich sind Kenntnisse aus BaM-DAM sowie Sto-							
Modul:	chastische Konzentra	tionsun	gleic	hun	gen	(sie	he Seite 123)	
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisc	h						
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90-minütige Klausur oder 30-							
prüfung oder kumulative Modulprü-	minütige mündliche Prüfung zur gewählten Lehrveranstaltung							
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	bestandene Modulpri	ifung						
CP								
Lehrveranstaltungen	Тур	SWS	ŗ	Sem	estei	r	CP	
			1	2	3	4		
Additive Kombinatorik	Vorlesung + Übung	2 + 1		*	*		5	
oder Analytische Kombinatorik	Vorlesung + Übung	2 + 1		*	*		5	
oder Markovketten und zufälliges Er-	Vorlesung + Übung	2 + 1		*	*		5	
zeugen								
oder zufällige Graphen	Vorlesung + Übung	2 + 1		*	*		5	

Modulbezeichnung: Stochastik, MaM-STO-gs	Wahlpflicht	CP: 13 *)

Höhere Stochastik: Grundlagen der Maßtheorie, Summen unabhängiger Zufallsvariabler, große Abweichungen, schwache Konvergenz, charakteristische Funktionen, Martingale, Invarianzprinzip.

 $Stochastische\ Prozesse: \ Markov-Ketten,\ bedingte\ Erwartung\ und\ Martingale,\ Poisson-/\ Punkt-/\ Erneuerungsprozesse,\ Brownsche\ Bewegung,\ Stochastisches\ Integral\ und\ It\^o-Formel.$

Qualifikationsziele und Kompetenzen:

Die Studierenden beherrschen die zentralen Kapitel der Wahrscheinlichkeitstheorie und sind in der Lage, wichtige Klassen zufälliger Prozesse forschungsorientiert zu analysieren.

Angebotszyklus (z.B. jährlich oder je-	jährlich						
des Semester):							
Dauer des Moduls:	1 Semester						
Voraussetzung für die Teilnahme am	BaM-ES						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 3	30-minü	tige	mü	ndli	che l	Prüfung zur
prüfung oder kumulative Modulprü-	gewählten Lehrveranstaltu	ng; 60-1	nini	$itig\epsilon$	es R	efer	at und ggf.
fung) sowie Prüfungsform:	schriftliche Ausarbeitung zu	ım Sem	inar				
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Lehrveranstaltungen	Тур	SWS	5	Sem	este	r	CP
			1	2	3	4	
Höhere Stochastik	Vorlesung + Übung	4+2	*		*		9
oder Stochastische Prozesse	Vorlesung + Übung	4 + 2		*		*	9
UND							
Seminar zur Stochastik	Seminar	2		*	*		4

Eine Spezialisierung in Stochastik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 123 beschriebenen Lehrveranstaltungen. Siehe dazu Seite 93.

Modulbezeichnung: Stochastik, MaM-STO-k	Wahlpflicht	CP: 5

Zufällige rekursive Strukturen: Selbstähnliche zufällige Objekte, zufällige Bäume, rekursive Algorithmen, Wahrscheinlichkeitsmetriken, stochastische Fixpunktgleichungen, Kontraktionsmethode.

 ${\it Martingal probleme}$: infinitesimale Beschreibung stochastischer Prozesse, starke Markov-Eigenschaft, Martingalprobleme, Anwendung auf Fleming-Viot-Prozess.

Schwache Konvergenz: Prokorov-Metrik, relative Kompaktheit, schwache Konvergenz auf C[0,1] und D[0,1], Satz von Donsker.

Stochastische Analyse von Algorithmen: Irrfahrten und binäre Bäume, Binärsuchbäume, probabilistische Methode und zufällige Graphen, Galton-Watson Bäume, Heuristiken für das traveling salesman problem, Digitale Suchbäume und Lempel-Ziv Kodierung.

Stochastische Modelle der Populationsgenetik: Diffusionsapproximation, Fleming-Viot-Prozesse, Coalescents, Mutation, Selektion, Rekombination.

Stochastische Konzentrationsungleichungen: Chernoff-Schranken, Martingalmethoden, Talagrands Induktionsmethode, logarithmische Sobolev-Ungleichung, Anwendungen auf randomisierte Algorithmen, stoch. Analyse von Algorithmen und kombinatorische Optimierung.

Qualifikationsziele und Kompetenzen:

Die Studierenden haben vertiefte Kenntnisse der mathematischen Theorie der Stochastik. Sie sind an die aktuelle Forschung herangeführt und haben Einblick in die Anwendungen.

Angebotszyklus (z.B. jährlich oder jedes Se-	jährlich								
mester):									
Dauer des Moduls:	1 Semester								
Voraussetzung für die Teilnahme am Modul:	BaM-ES; Empfohlen	fohlen sind Kenntnisse aus den Lehrveranstal-							
	tungen Stochastische	Prozess	se u	$\operatorname{nd} I$	$T\ddot{o}h\epsilon$	ere S	Stochastik		
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englise	h							
Studiennachweise (Teilnahme- / Leistungs-	_								
nachweise):									
Modulprüfung(z.B. Modulabschlussprü-	60-minütige Klausur	oder 2	oder 20-30-minütige mündliche Prüfung						
fung oder kumulative Modulprüfung) sowie	zur gewählten Lehrve	eranstal	tung	ŗ					
Prüfungsform:									
Voraussetzungen für die Vergabe der CP:	bestandene Modulprüfung								
Lehrveranstaltungen	Тур	SWS	,	Sem	este	r	CP		
			1	2 3		4			
Zufällige rekursive Strukturen	Vorlesung + Übung	2 + 1		*		*	5		
oder Martingalprobleme	$Vorlesung + \ddot{U}bung$	2+1		*	*	*	5		
oder Schwache Konvergenz	$Vorlesung + \ddot{U}bung$	2+1		*	*	*	5		
oder Stochastische Analyse von Algorithmen	Vorlesung + Übung	2+1	*		*		5		
oder Stochastische Modelle der Populations-	Vorlesung + Übung	2+1		*	*	*	5		
genetik									
oder Stochastische Konzentrationsungleichun-	$Vorlesung + \ddot{U}bung$	2 + 1		*	*	*	5		
gen									

Modulbezeichnung: Statistik, MaM-STA-ks	Wahlpflicht	CP: 9 *)

Statistik 1: Deskriptive Statistik, Schätzen mit Konfidenz, Maximum-Likelihood, Suffizienz, Testen statistischer Hypothesen (z-Test, t-Test, Wilcoxontest, Permutationstest), Einfache Varianzanalyse und lineare Regression, Ideen des Bootstrap, Datenanalyse mit dem statistischen Programmpaket R.

Statistik 2: Normales lineares Modell, mehrfaktorielle Varianzanalyse, Kovarianzanalyse, multiple Regression und Korrelation, Hauptkomponentenanalyse, multidimensionale Normalverteilung, Chiquadrattest, Delta-Methode, logistische Regression, Ideen der Modellwahl.

Statistik 3: Verallgemeinertes Lineares Modell, Diskriminanzanalyse, Bayessche Statistik, Zeitreihenmodelle, angewandte Statistik von Punktprozessen.

Statistisches Praktikum: verschiedene Themen aus der Statistik im Zusammenwirken mit Anwendern

Qualifikationsziele und Kompetenzen:

Die Studierenden haben vertiefte Kenntnisse in statistischer Modellierung und der Analyse von Zufälligkeit. Sie sind kompetent, komplexe statistische Sachverhalte zu präsentieren und mit Anwendern zu diskutieren.

Angebotszyklus (z.B. jährlich oder je-	jährlich							
des Semester):								
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	BaM-ES. Für $Statistik 2 +$	Statist	isch	es P	Prakt	ikur	n zusätzlich	
Modul:	Statistik 1. Und für Stat	istik 3	+ ,	Stat	istis	ches	Praktikum	
	zusätzlich Statistik 1 sowie	Kenntn	isse	aus	Sta	tisti	k 2.	
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	90-minütige Klausur oder 3	30-minü	ütige mündliche Prüfung zur					
prüfung oder kumulative Modulprü-	Lehrveranstaltung Statistik	1;60-m	ninütiges Referat und schrift-					
fung) sowie Prüfungsform:	liche Ausarbeitung zum Ste	atistisch	ien Praktikum					
Voraussetzungen für die Vergabe der	bestandene Modulprüfung.							
CP:								
Lehrveranstaltungen	Typ	SWS		Sem	este	r	CP	
			1	2	3	4		
Statistik 1	Vorlesung + Übung	2+1	*		*		5	
ODER Statistik 2	Vorlesung + Übung	2 + 1		*		*	5	
ODER Statistik 3	Vorlesung + Übung	2 + 1	*		*		5	
UND								
Statistisches Praktikum	Seminar	2		*		*	4	

Eine Spezialisierung in Statistik mit 18 CP erreicht man durch Hinzunahme einer der auf Seite 70 beschriebenen Lehrveranstaltungen Stochastische Prozesse oder Höhere Stochastik, siehe dazu Seite 93.

Modulbezeichnung: Statistik, MaM-STA-k	Wahlpflicht	CP: 5

Statistik 2: Normales lineares Modell, mehrfaktorielle Varianzanalyse, Kovarianzanalyse, multiple Regression und Korrelation, Hauptkomponentenanalyse, multidimensionale Normalverteilung, Chiquadrattest, Delta-Methode, logistische Regression, Ideen der Modellwahl.

Statistik 3: Verallgemeinertes Lineares Modell, Diskriminanzanalyse, Bayessche Statistik, Zeitreihenmodelle, angewandte Statistik von Punktprozessen.

Qualifikationsziele und Kompetenzen:

Die Studierenden haben tiefgehende Kenntnisse in statistischer Modellierung und der Analyse von Zufälligkeit. Sie sind kompetent, komplexe statistische Sachverhalte zu präsentieren und mit Anwendern zu diskutieren. Sie sind qualifiziert, das Erarbeitete in der Masterarbeit auf forschungsorientiertem Niveau anzuwenden.

Angebotszyklus (z.B. jährlich oder je-	jährlich							
des Semester):								
Dauer des Moduls:	1 Semester							
Voraussetzung für die Teilnahme am	Kenntnisse aus Statistik 1	werden	vora	usge	setz	zt.		
Modul:	Für <i>Statistik 3</i> werden zu	sätzlich	Ker	$_{ m intni}$	sse	aus	s Statistik 2	
	vorausgesetzt.							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch							
Studiennachweise (Teilnahme- / Leis-	_							
tungsnachweise):								
Modulprüfung (z.B. Modulabschluss-	Modulabschlussprüfung: 90	-minütig	ge K	lausı	ır o	der	30-minütige	
prüfung oder kumulative Modulprü-	mündliche Prüfung zur gew	ählten l	Lehr	vera	nsta	altui	ng	
fung) sowie Prüfungsform:								
Voraussetzungen für die Vergabe der	bestandene Modulprüfung.							
CP:								
Lehrveranstaltungen	Тур	SWS	S	Seme	stei	r	CP	
			1	2	3	4		
Statistik 2	Vorlesung + Übung	2 + 1		*		*	5	
oder Statistik 3	Vorlesung + Übung	2 + 1	*		*		5	

Modulbezeichnung: Finanzmathematik in stetiger Zeit, MaM-KF-gs	Wahlpflicht	CP: 14
Inhalto der Lehrweranstaltungen:		

Vorlesung Finanzmathematik in stetiger Zeit 1: Martingaldarstellungssatz, Spiegelungsprinzip und exotische Optionen, Wertpapiere mit Dividenden, Forwards/Futures, Zinsstrukturmodelle, Kreditrisiko

Vorlesung Finanzmathematik in stetiger Zeit 2: Optimales Stoppen und Derivate amerikanischen Typs, stochastische Kontrolltheorie, Lévy-Prozesse, Modellierung von Marktunvollkommenheiten

Qualifikationsziele und Kompetenzen:

Die Studierenden haben vertiefte Kenntnisse der Finanzmathematik in stetiger Zeit erworben und einen Einblick in die Anwendungen gewonnen.

Angebotszyklus (z.B. jährlich oder je-	jährlich						
des Semester):							
Dauer des Moduls:	2 Semester						
Voraussetzung für die Teilnahme am	BaM-SAN						
Modul:							
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-	_						
tungsnachweise):							
Modulprüfung(z.B. Modulabschluss-	Zu jeder Vorlesung 20-min	itige Pr	üfun	ıg; c	a. 6	0-m	inütiges Re-
prüfung oder kumulative Modulprü-	ferat und ggf. schriftliche A	usarbei	tung	zui	m Se	emir	nar
fung) sowie Prüfungsform:							
Voraussetzungen für die Vergabe der	bestandene Modulprüfung						
CP:							
Herkunft des Moduls sofern nicht aus	_						
diesem Studiengang:							
Verwendbarkeit des Moduls in anderen							
Studiengängen:							
Lehrveranstaltungen	Тур	SWS	5	Sem	este:	r	CP
			1	2	3	4	
Finanzmathematik in stetiger Zeit 1	Vorlesung + Übung	2+1	*				5
UND							
Finanzmathematik in stetiger Zeit 2	Vorlesung + Übung	2+1		*			5
UND							,
Finanzmathematisches Seminar	Seminar	2		*			4

Eine Spezialisierung in Finanzmathematik mit mindestens 19 CP erreicht man durch Hinzunahme einer mindestens zweistündigen Mastervorlesung aus den Bereichen Stochastik oder Numerik.

Modulbezeichnung: Stochastische Analysis mit Finanzmathe, MaM-StochAna-ks Wahlpflicht	CP: 9
Inhalte:	

Stochastisches Integral für linksstetige Integranden und Semimartingale als Integratoren, Itô-Formel, Girsanov-Meyer-Theorem, Vermögensdynamiken in stetiger Zeit, Black-Scholes-Modell, implizite Volatilitäten, Sprungrisiko

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen Ideen aus der stochastischen Analysis und besitzen einen Einblick in die zeitstetige Modellierung von Finanzmärkten. Sie studieren fortgeschrittene Modelle, die in der Praxis angewendet werden.

Angebotszyklus (z.B. jährlich oder je-	jährlich						
des Semester):							
Dauer des Moduls:	2 Semester						
Voraussetzung für die Teilnahme am	bestandene Modulprüfungen in BaM-HA	A und B	aM-	ES,	zud	.em	
Modul:	wird die Vorlesung "Stochastische Proze	sse" emj	pfoh	len			
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch						
Studiennachweise (Teilnahme- / Leis-							
tungsnachweise):							
Modulprüfung sowie Prüfungsform:	20-30-minütige mündliche Prüfung zur Vorlesung, 90-minütiges						
	Referat und schriftliche Ausarbeitung zum Seminar						
Voraussetzungen für die Vergabe der	bestandene Modulprüfungen						
CP:							
Lehrveranstaltungen	Typ	SWS	5	Seme	este	r	CP
			1	2	3	4	
Stochastische Analysis mit Finanzma-	Vorlesung + Übung	2+1		*			5
thematik							
UND Finanzmathematisches Seminar	Seminar	2			*		4

Modulbezeichnung: Zeitdiskrete Finanzr	nothomotik MoM DigFin k	Wahlpflicht	CP: 5		
Inhalte:	mathematik, Maw-Dist iii-k	wampinen	01.5		
minare.					
Mathematische Modellierung zeitdiskret	er Finanzmärkte, No-Arbitra	ge-Prinzip, zeitdis	krete Martingale,		
Maßwechsel, Derivate europäischen Typs					
Nutzenoptimierung					
Qualifikationsziele und Kompetenzen:					
Die Studierenden beherrschen die grun	ndlegenden Begriffe der stoch	hastischen Finanz	mathematik, das		
	Zusammenspiel aus Modellierung und mathematischer Beweisführung und sie besitzen fortgeschrittene				
Kenntnisse über komplexe Finanzprodul	ukte und ihre Bewertung.				
Angebotszyklus (z.B. jährlich oder je-	jährlich				
des Semester):					
Dauer des Moduls:	1 Semester				
Voraussetzung für die Teilnahme am	bestandene Modulprüfungen in BaM-HA und BaM-ES				
Modul:					
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch				
Studiennachweise (Teilnahme- / Leis-	_				
tungsnachweise):					
Modulprüfung sowie Prüfungsform:	20-30-minütige mündliche I	Prüfung			
Voraussetzungen für die Vergabe der	bestandene Modulprüfung				
CP:					
Lehrveranstaltungen	Тур	SWS Semest			

Vorlesung + Übung

1 2 3 4

5

2+1

Einführung in die Stochastische Finanzmathematik

Kolloquiumsmodul	MaM-K	CP: 5
Lehrveranstaltung	SWS	CP
Oberseminar	2	2
Abschlussseminar	2	3

Masterarbeit	MaM-Ma	CP: 30
Lehrveranstaltung	SWS	CP
Masterarbeit	_	30

${\bf Anhang~6: Modulbeschreibungen/Master/Professionalisierungsbereich}$

Professionalisierung 1	MaM-PR1	CP: 9
Lehrveranstaltung	SWS	CP
Berufspraktikum	_	9
oder		
Tutoriumsleitung	_	9

Professionalisierung 2	MaM-PR2	CP: 6
Lehrveranstaltung	SWS	CP
Lehrveranstaltung nach Wahl	2 V	3
Anleitung zum wissenschaftlichen Arbeiten	2 S	3

Modulbezeichnung: Anleitung zur Statistischen Beratung, MaM-PR2-V	V Wahlpflicht	CP: 3
---	---------------	-------

Inhalte der Lehrveranstaltungen nach Wahl:

Anleitung zur Statistischen Beratung: Diskussion von Fallbeispielen aus der statistischen Beratung.

Qualifikationsziele und Kompetenzen:

Die Studierenden machen sich vertraut mit allen Aspekten angewandter statistischer Beratung, wie Diskussion mit dem Anwender, Herausarbeitung der Hauptfragen, Übersetzung in statistische Fragestellungen, Diskussion von Modellansätzen, Anwendung einfacher statistischer Verfahren und Erstellung und Auswahl graphischer Darstellungen sowie eines Kurzberichts für den Anwender.

Angebotszyklus (z.B. jährlich oder je-	jährlich oder zweijährlich					
des Semester):						
Dauer des Moduls:	1 Semester					
Voraussetzung für die Teilnahme am	Statistik 1					
Modul:						
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch					
Studiennachweise (Teilnahme- / Leis-	LN: Bearbeitung von 1-2 Fallbo	eispielen	mit	Präs	entati	ion und
tungsnachweise):	Kurzbericht					
Voraussetzungen für die Vergabe der	siehe Studiennachweise					
CP:						
Lehrveranstaltungen	Тур	SWS	S	$\mathbf{e}_{\mathbf{mest}}$	er	CP
			1	2 3	4	
Anleitung zur Statistischen Beratung	Proseminar	2		*	*	3

Das Proseminar Anleitung zur Statistischen Beratung stellt eine Möglichkeit für die Veranstaltung Lehrver anstaltung nach Wahl im Modul MaM-PR2 dar.

1.15 data observation 2 data 5 data belief 1 familiari, 1.1di. 1 1 12 // // // // // // // // // // // // //		Modulbezeichnung:	Präsentation zum	Statistischen	Praktikum,	MaM-PR2-W	Wahlpflicht	CP: 2
--	--	-------------------	------------------	---------------	------------	-----------	-------------	-------

Inhalte der Lehrveranstaltungen nach Wahl:

Präsentation zum Statistischen Praktikum: Präsentation der Hauptergebnisse aus dem Statistischen Praktikum in einer anwenderfreundlichen Kurzvortragsreihe.

Qualifikationsziele und Kompetenzen:

Die Studierenden lernen, die Hauptbotschaften ihres im Statistischen Praktikum erarbeiteten mathematisch-statistischen Themas herauszuarbeiten und in gut verständlicher und knapper Form (ca. 10 Min) in einem Kurzvortrag zusammen zu fassen. Sie erlernen geeignete graphische Darstellungen der Hauptbotschaften und prägnante und formal präzise Formulierungen, die auch für Anwender verständlich sein sollen.

Angebotszyklus (z.B. jährlich oder je-	jährlich oder zweijährlich, zum Statistischen Praktikum	
des Semester):		
Dauer des Moduls:	Blockveranstaltung am Semesterende	
Voraussetzung für die Teilnahme am	Statistik 1, Statistisches Praktikum	
Modul:		
(ggf.) Lehr- und Prüfungssprache:	Deutsch oder Englisch	
Studiennachweise (Teilnahme- / Leis-	Präsentation der Hauptergebnisse aus dem Statistisch	hen
tungsnachweise):	Praktikum in einem anwenderfreundlichen Kurzvortrag	
77	: 1 () 1: 1 :	
Voraussetzungen für die Vergabe der	siehe Studiennachweise	
CP:		
Lehrveranstaltungen	Typ SWS Semester	CP
		.
Präsentation zum Statistischen Prakti-	Proseminar * *	2
kum		

Das Proseminar Präsentation zum Statistischen Praktikum kann in das Modul BaM-PR2 eingebracht werden. Um auf die geforderten 3 CPs für die Veranstaltung *Lehrveranstaltung nach Wahl* zu kommen, kann beispielsweise durch ein Softskill-Modul mit 1 CP ergänzt werden.

$Anhang \ 7: \ Modulbeschreibungen/Master/Anwendungsfach$

Hier sind die Anwendungsfächer für das Masterstudium ausgeführt

Anwendungsfach	FB	Seite
Betriebswirtschaftslehre	02	134
Finanzwirtschaft (Finance)	02	135
Volkswirtschaftslehre	02	136
Geowissenschaften	11	137
Meteorologie	11	137
Informatik	12	138
Physik	13	139
Chemie	14	140
Biowissenschaften	15	140

Für die in diesem Abschnitt aufgeführten Module gelten die Modulbeschreibungen und die Bedingungen zum Erwerb von CP entsprechend den aktuell gültigen Fassungen der Prüfungsordnungen derjenigen Fachbereiche, welche diese Module anbieten. Darüber hinaus finden sich in den jeweiligen Prüfungsordnungen aktuelle und ausführliche Beschreibungen der Module, weshalb hier nur grobe Übersichten über die jeweils angebotenen Module aufgeführt sind.

Anwendungsfach Betriebswirtschaftslehre – FB 2

Wenn im Bachelorstudium weder Betriebswirtschaftslehre noch Finanzwirtschaft noch Volkswirtschaftslehre als Anwendungsfach gewählt wurde, ist im Masterstudium das Anwendungsfach Betriebswirtschaftslehre identisch mit dem auf Seite 81 für das Bachelorstudium beschriebenen Anwendungsfach Betriebswirtschaftslehre.

Wenn im Bachelorstudium Betriebswirtschaftslehre als Anwendungsfach gewählt wurde, besteht im Masterstudium das Anwendungsfach Betriebswirtschaftslehre aus folgendem Angebot:

- 2 Grundlagenmodule (jeweils 6 CP) und
- 2 Modulen (jeweils 6 CP) des 2. 4. Semesters (Vertiefung)

des Masterstudiengangs Management mit Kernbereich Accounting and Information Management.

Wenn im Bachelorstudium Finanzwirtschaft als Anwendungsfach gewählt wurde, besteht im Masterstudium das Anwendungsfach Betriebswirtschaftslehre aus

- den auf Seite 81 aufgeführten Modulen BaM-AFBW-2, BaM-AFBW-3 und BaM-AFBW-4,
- einer Vorlesung nach Wahl (2 V 1 Ü, 5 CP) aus dem Studienschwerpunkt Finance & Accounting (Wahlpflichtmodul Finance mit einem Startkürzel von WPMF) des Bachelorstudienganges Wirtschaftswissenschaften, jeweils nach aktuellem Angebot
- sowie folgendem (in der Verantwortung des FB 12/ Informatik angebotenen) Modul

Ergänzende Themen aus der Wirtschaftsinformatik	MaM-AFBW-1	CP: 2
Lehrveranstaltung	SWS	CP
Ergänzende Themen aus der Wirtschaftsinformatik	2 S	2

Wenn im Bachelorstudium Volkswirtschaftslehre als Anwendungsfach gewählt wurde, besteht im Masterstudium das Anwendungsfach Betriebswirtschaftslehre aus

- den auf Seite 81 aufgeführten Modulen BaM-AFBW-1, BaM-AFBW-2, BaM-AFBW-3 und BaM-AFBW-4
- sowie dem Modul MaM-AFBW-1.

Anwendungsfach Finanzwirtschaft (Finance) – FB 2

Wenn im Bachelorstudium weder Betriebswirtschaftslehre noch Finanzwirtschaft noch Volkswirtschaftslehre als Anwendungsfach gewählt wurde, ist im Masterstudium das Anwendungsfach Finanzwirtschaft identisch mit dem auf Seite 82 für das Bachelorstudium beschriebenen Anwendungsfach Finanzwirtschaft.

Wenn im Bachelorstudium Finanzwirtschaft als Anwendungsfach gewählt wurde, besteht das Anwendungsfach Finanzwirtschaft aus folgendem Angebot:

- Grundlagenmodul Finance (6 CP) des Masterstudiengangs Finance and Accounting
- 3 Modulen aus dem Bereich Finance (jeweils 6 CP) des 2.- 4. Semesters (Vertiefung)

des Masterstudiengangs Management mit Kernbereich Finance and Accounting oder des Masterstudiengangs Money and Finance.

Wenn im Bachelorstudium Betriebswirtschaftslehre als Anwendungsfach gewählt wurde, besteht im Masterstudium das Anwendungsfach Finanzwirtschaft aus folgendem Angebot:

- Finanzen 2 / BFIN (2 V 1 Ü, 6 CP)
- Finanzen 3 / PFIN (2 V 1 Ü, 6 CP)
- 2 Vorlesungen nach Wahl (2 V 1 Ü, 5 CP) aus dem Studienschwerpunkt Finance & Accounting (Wahlpflichtmodul Finance mit einem Startkürzel von WPMF) des Bachelorstudienganges Wirtschaftswissenschaften, jeweils nach aktuellem Angebot
- sowie dem auf Seite 134 beschriebenen Modul MaM-AFBW-1.

Wenn im Bachelorstudium Volkswirtschaftslehre als Anwendungsfach gewählt wurde, besteht im Masterstudium das Anwendungsfach Finanzwirtschaft aus

- den auf Seite 82 aufgeführten Modulen BaM-AFFW-1 und BaM-AFFW-2
- sowie dem auf Seite 134 beschriebenen Modul MaM-AFBW-1.

Anwendungsfach Volkswirtschaftslehre – FB 2

Wenn im Bachelorstudium weder Betriebswirtschaftslehre noch Finanzwirtschaft noch Volkswirtschaftslehre als Anwendungsfach gewählt wurde, ist im Masterstudium das Anwendungsfach Volkswirtschaftslehre identisch mit dem auf Seite 83 für das Bachelorstudium beschriebenen Anwendungsfach Volkswirtschaftslehre.

Wenn im Bachelorstudium Betriebswirtschaftslehre oder Finanzwirtschaft als Anwendungsfach gewählt wurde, besteht im Masterstudium das Anwendungsfach Volkswirtschaftslehre aus

- den auf Seite 83 aufgeführten Modulen BaM-AFVW-1 und BaM-AFVW-2
- sowie dem auf Seite 134 beschriebenen Modul MaM-AFBW-1.

Wenn im Bachelorstudium Volkswirtschaftslehre als Anwendungsfach gewählt wurde, besteht das Anwendungsfach Volkswirtschaftslehre aus folgendem Angebot:

- 2 Modulen aus dem Bereich Fundamentals (jeweils 6 CP) des 1. Semesters und
- 1 Modul aus Public Policy und
- $\bullet\,$ 1 Modul aus International Economics (jeweils 6 CP) des 2. 4. Semesters

des Masterstudiengangs International Economics and Economic Policy. Die Unterrichts- und Prüfungssprache ist Englisch.

Anwendungsfach Geowissenschaften - FB 11

Wenn im Bachelorstudium Geowissenschaften nicht als Anwendungsfach gewählt wurde, ist im Masterstudium das Anwendungsfach Geowissenschaften identisch mit dem auf Seite 84 für das Bachelorstudium beschriebenen Anwendungsfach Geowissenschaften.

Wenn im Bachelorstudium Geowissenschaften als Anwendungsfach gewählt wurde, besteht das Anwendungsfach Geowissenschaften im Masterstudium aus Veranstaltungen im Umfang von 24 CP, welche nicht bereits im Bachelorstudium eingebracht wurden, der auf Seite 84 für das Bachelorstudium beschriebenen Module im Anwendungsfach Geowissenschaften.

Anwendungsfach Meteorologie – FB 11

Wenn im Bachelorstudium Meteorologie nicht als Anwendungsfach gewählt wurde, ist im Masterstudium das Anwendungsfach Meteorologie identisch mit dem auf Seite 86 für das Bachelorstudium beschriebenen Anwendungsfach Meteorologie.

Wenn im Bachelorstudium Meteorologie als Anwendungsfach gewählt wurde, besteht das Anwendungsfach Meteorologie im Masterstudium aus Veranstaltungen im Umfang von 24 CP, welche nicht bereits im Bachelorstudium eingebracht wurden, der auf Seite 86 für das Bachelorstudium beschriebenen Module im Anwendungsfach Meteorologie.

Anwendungsfach Informatik – FB 12

Wenn im Bachelorstudium Informatik nicht als Anwendungsfach gewählt wurde, besteht das Anwendungsfach Informatik im Masterstudium aus folgendem Angebot:

- den auf Seite 88 für das Bachelorstudium beschriebenen Modulen BaM-AFI-1 und BaM-AFI-4
- dem Modul MaM-AFI-1
- einem der Module BaM-AFI-2, BaM-AFI-3, BaM-AFI-5 (vgl. Seite 88) oder dem Modul MaM-AFI-2

Wenn im Bachelorstudium Informatik als Anwendungsfach gewählt wurde und das Modul BaM-AFI-2 (vgl. Seite 88) nicht im Bachelorstudium eingebracht wurde, dann besteht das Anwendungsfach Informatik im Masterstudium aus folgendem Angebot:

- entweder dem Modul BaM-AFI-2 oder dem Model MaM-AFI-2
- Module aus dem Vertiefungskatalog der aktuell gültigen Bachelorordnung Informatik, mit Ausnahme des Moduls MaM-AFI-2, oder Modulen aus den Informatik-Modulen des Masterstudiengangs Informatik aus den Fachgebieten Informatik der Systeme, Angewandte Informatik oder Grundlagen der Informatik, im Umfang von mindestens 16 CP.

Wenn im Bachelorstudium Informatik als Anwendungsfach gewählt wurde und das Modul BaM-AFI-2 (vgl. Seite 88) bereits im Bachelorstudium eingebracht wurde, dann besteht das Anwendungsfach Informatik im Masterstudium aus Modulen des Vertiefungskatalog der aktuell gültigen Bachelorordnung Informatik, oder Modulen aus den Informatik-Modulen des Masterstudiengangs Informatik aus den Fachgebieten Informatik der Systeme, Angewandte Informatik oder Grundlagen der Informatik, im Umfang von mindestens 24 CP.

Ausgewählte Themen der Informatik	MaM-AFI-1	CP: 5
Lehrveranstaltung	SWS	CP
Seminar nach Wahl *)	2 S	5

^{*)} Das Seminarangebot ergibt sich aus der aktuell gültigen Bachelorordnung Informatik.

Theoretische Informatik 2	MaM-AFI-2	CP: 8
Lehrveranstaltung	SWS	CP
Theoretische Informatik 2	3 V 2 Ü	8

Anwendungsfach Physik – FB 13

Aus den folgenden Modulen kann frei gewählt werden mit der Einschränkung, dass höchstens eines der beiden Anfängerpraktika eingebracht werden darf:

```
Experimentalphysik 1a: Mechanik (6 CP)
Experimentalphysik 1b: Thermodynamik (4 CP)
Experimentalphysik 2: Elektrodynamik (8 CP)
Experimentalphysik 3: Optik, Atome und Quanten (8 CP)
Experimentalphysik 4a: Kerne und Elementarteilchen (4 CP)
Experimentalphysik 4b: Festkörper (4 CP)
Theoretische Physik 2: Klassische Mechanik (8 CP)
Theoretische Physik 3: Klassische Elektrodynamik (8 CP)
Theoretische Physik 4: Quantenmechanik (8 CP)
Theoretische Physik 5: Thermodynamik und Statistische Physik (8 CP)
Anfängerpraktikum 1 (8 CP)
Anfängerpraktikum 2 (8 CP)
```

Wurde im Bachelorstudium als Anwendungsfach Experimentalphysik oder Theoretische Physik gewählt, dann dürfen die dafür gewählten Module nicht nochmals eingebracht werden.

Für den Fall mangelnder Aufnahmekapazität in den Praktika wird auf die in der Ordnung des Bachelorstudiengangs Physik bestehende Regelung verwiesen.

Anwendungsfach Chemie – FB 14

Wenn im Bachelorstudium Chemie nicht als Anwendungsfach gewählt wurde, ist im Masterstudium das Anwendungsfach Chemie identisch mit dem auf Seite 91 für das Bachelorstudium beschriebenen Anwendungsfach Chemie.

Wenn im Bachelorstudium Chemie als Anwendungsfach gewählt wurde, besteht das Anwendungsfach Chemie im Masterstudium aus Veranstaltungen im Umfang von 24 CP, welche nicht bereits im Bachelorstudium eingebracht wurden, der auf Seite 91 für das Bachelorstudium beschriebenen Module im Anwendungsfach Chemie.

Sollte weiterer Bedarf an Veranstaltungen aus dem Bachelor- oder Masterstudiengang Chemie bestehen, können die gewünschten Veranstaltungen nach Maßgabe freier Kapazitäten gewählt werden.

Anwendungsfach Biowissenschaften - FB 15

Das Anwendungsfach Biowissenschaften im Masterstudium besteht aus genau vier frei wählbaren Modulen, welche nicht bereits im Bachelorstudium eingebracht wurden, der auf Seite 92 beschriebenen Module des Anwendungsfaches Biowissenschaften im Bachelorstudium.

Artikel II

Diese Neufassung tritt am Tage nach ihrer Veröffentlichung im UniReport/Satzungen und Ordnungen der Johann Wolfgang Goethe-Universität Frankfurt am Main in Kraft und gilt erstmals ab Wintersemester 2016/17.

Frankfurt am Main, den 27. September 2016

Prof. Dr. Uwe Brinkschulte

Dekan des Fachbereichs Informatik und Mathematik